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Abstract
Few-shot Anomaly Detection (AD) for images aims to detect anom-
alies with few-shot normal samples from the target dataset. It is
a crucial task when only few samples can be obtained, and it is
challenging since it needs to be generalized to different domains.
Existing methods try to enhance the generalizability of AD by in-
corporating large vision-language models (LVLMs). However, how
to transform category semantic information in LVLMs into anom-
aly information to improve the generalizability of AD remains a
challenge facing existing methods. To address the challenge, we
propose a few-shot AD method called MetaCAN, a novel category-
to-anomaly network trained with AD meta-learning scheme based
on an LVLM. Specifically, MetaCAN constructs the auxiliary train-
ing data and multiple tasks based on different categories to perform
AD meta-learning, which ensures that the optimization toward the
achievement of optimal anomaly detection across all categories.
Moreover, MetaCAN introduces an image-image anomaly discrim-
inator and an image-text anomaly detector to fully exploit the
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powerful multimodal semantic representations during auxiliary
training. Once trained on auxiliary datasets, MetaCAN can be ap-
plied directly to other target datasets without retraining. Extensive
experiments on six real-world datasets demonstrate that MetaCAN
achieves state-of-the-art performance on cross-domain and cross-
category anomaly detection tasks compared with existing methods.
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1 Introduction
Anomaly detection (AD) plays a crucial role in human daily life.
It is widely applied in various fields, such as industrial inspection,
medical analysis, and security monitoring [29, 41]. Traditional re-
search [1, 3, 8, 25, 27] typically proposes a single AD method for
a specific category. Although these methods achieve good results,
they are limited to specific categories and require a large amount
of training data. These methods are impractical in real-world sce-
narios because abnormal samples are difficult to obtain. Therefore,
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Figure 1: The t-SNE comparison of CLIP and MetaCAN on
VisA. Left: CLIP’s anomaly boundary is difficult to determine
due to that different classes are grouped together. Right: After
balancing the category and anomaly, MetaCAN get a clear
boundary.

few-shot AD becomes a crucial task in such scenarios, which can
detect cross-category anomalies with a few normal samples.

To achieve the goal of detecting cross-category anomalies with
a few normal samples, existing work attempts from various as-
pects such as feature extraction and anomaly learning. RegAD [12]
first proposes a category-agnostic few-shot AD approach through
image alignment. This research marks the beginning of research
on few-shot AD. Recently, large vision-language models (LVLMs)
such as CLIP [30], have demonstrated strong few-shot capabilities
in various tasks, including few-shot AD. For example, WinCLIP
[14]introduces a windows-based CLIP, which employs prompt en-
semble and window features to improve the performance of few-
shot AD in industrial inspection. InCTRL [43] employs residual
learning to create a general AD model, which can detect anomalies
from different domain. IIPAD [26] learns a class-shared prompt
generator to detect anomalies across multiple categories.

Although these methods have achieved some progress, they fail
to consider the impact of category semantics in LVLMs, such as
CLIP, on few-shot AD. As shown in Figure 1, in the original feature
distribution of CLIP, the objects are clustered based on different
category semantics, making it difficult to establish an effective
decision boundary to distinguish between normal and abnormal
samples. This is because LVLMs such as CLIP primarily align im-
ages with their corresponding category semantics, rather than the
abnormality/normality in the images. As a result, CLIP has strong
capabilities in few-shot classification based on category semantics,
rather than in few-shot AD based on anomaly semantics. Directly
using LVLMs such as CLIP does not yield a few-shot ADmodel with
strong generalizability. Therefore, they still face a main challenge
in building an effective few-shot AD method for various categories
in different domains. The main challenge is how to effectively trans-
form the category semantic information in LVLMs into anomalous
information to improve the generalizability of few-shot AD.

To address the above challenge, and inspired by meta-learning
methods for few-shot classification [10, 39, 40], we propose a few-
shot ADmethod, namedMetaCAN, which is a category-to-anomaly
network trained using a meta-learning scheme tailored for AD
(i.e., AD meta-learning). MetaCAN learns cross-category anom-
aly information with AD meta-learning and transforms the large
vision-language model’s powerful few-shot category classification

capability into AD capability by the category-to-anomaly network,
which enables the model to balance between category and anomaly,
as shown in Figure 1. AD meta-learning constructs a new train-
ing scheme, including task and data constructions, which divides
the auxiliary training set into 𝑁 training tasks according to ob-
ject categories, with each task containing a support dataset and
a query dataset. Different from traditional meta-learning for clas-
sification, in AD meta-learning both support and query datasets
contain query samples and 𝑘-shot reference samples. The support
dataset and query dataset are used for the model’s outer and inner
updates, respectively. The total loss of each task is used to update the
model parameters in the category-to-anomaly network. This pro-
cess ensures that the optimization target of the model becomes the
simultaneous achievement of optimal AD across all categories and
enables direct AD on new data without fine-tuning. By leveraging
anomaly learning across various feature levels (feature pyramids)
and modalities (image-image, image-text), MetaCAN transforms
the category semantic representation capability of LVLMs for AD.

In summary, our contributions are as follows.
• We propose a novel few-shot AD scheme, termed AD meta-
learning, which includes new mechanisms for data construc-
tion, task construction, and parameter updating. This scheme
improves the generalizability of few-shot AD across various
categories and domains.

• We propose a few-shot AD method, i.e., MetaCAN, which is
a category-to-anomaly network trained with the AD meta-
learning scheme, that can effectively transform the large
vision-language model’s powerful semantic learning capa-
bility into AD ability.

• Comprehensive experiments are conducted on six datasets
from different domains, demonstrating MetaCAN’s strong
few-shot AD capabilities across various categories over dif-
ferent domains.

2 Related Work
2.1 Deep Anomaly Detection
Deep anomaly detection (AD), which addresses AD problems using
deep neural networks. In the past, researchers have often focused on
AD with a one-model-per-category approach. For example, some
methods achieve AD by modeling normal states [1, 12, 21, 33],
while others extract features using pre-trained neural networks
[5, 6, 31], followed by anomaly classification. Although these meth-
ods have shown good performance on certain datasets, they follow
a one-model-per-category approach, requiring retraining for each
new category of AD. To address this issue, some researchers have
begun exploring ways to adapt to new categories of AD without
retraining. For example, PaDim [6] and PatchCore [31] employ
metric learning to measure the distance between normal and ab-
normal samples for anomaly classification. while RegAD [12] uses
the Siamese Network to compare samples with normal samples,
achieving category-agnostic few-shot AD.

2.2 Large Vision-Language Models and AD
Recent large vision-language models (LVLMs) such as CLIP [30]
have achieved significant success. With the emergence of various
LVLMs [17, 18, 20], researchers began to explore their application
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Figure 2: Overview of training and network structure of MetaCAN

in specialized fields [9, 24, 38], including AD. The AD methods can
be categorized into zero-shot and few-shot. Zero-shot AD include
AnomalyCLIP [42], Adaclip[4], etc., while few-shot AD include
Winclip [14], AnomalyGPT [11], InCTRL [43], IIPAD [26], KAG-
Prompt [36], and PromptAd[19]. Since our approach focuses on
few-shot, we do not compare it with zero-shot AD. Among these
few-shot AD, AnomalyGPT achieves strong performance by lever-
aging the PandaGPT [35] which demands substantial computational
resources. Additionally, the PromptAd and KAG-Prompt focus on
training a model for a class, which differs from our setting. In
contrast, other methods still lack robustness for cross-category AD.

2.3 Meta Learning
Meta-learning is learning to learn. By acquiring sufficient knowl-
edge, a model can quickly adapt to new tasks. It can be catego-
rized into optimization-based and metric-based methods. Notable
optimization-based methods include MAML [10] and Reptile [28].
MAML constructs various training tasks, each consisting of a sup-
port set and a query set, enabling the model to undergo meta-
learning training. This allows the model to quickly adapt to the
classification of different object categories. In metric-based learn-
ing, prominent works include MatchingNet [37] and SiamenseNet
[15]. Matching Network incorporates external memory to enhance
the network’s learning capacity. However, these approaches are
designed for category classification and cannot be directly applied
to AD. This is because that object’s categories are diverse and
learning prior knowledge from other categories can help extend to
new category classifications, AD only involves two classes: normal
and abnormal. It is not possible to directly derive sufficient prior
knowledge from these two classes for AD. Consequently, applying
meta-learning to few-shot AD is still challenging.

3 Methods
To enhance the generalizability of few-shot AD, we propose Meta-
CAN. In this section, we will introduce the framework of MetaCAN,

and explain how it improves the robustness of AD across different
categories.

3.1 Overview
MetaCAN consists of two main components, i.e., AD meta-learning
and category-to-anomaly network. As shown in Figure 2 (a), the
AD meta-learning controls the task construction, data construction,
and parameter updating procedures. Data constructed by AD meta-
learning is then fed into the category-to-anomaly network, where it
undergoes feature extraction and learning of anomaly information,
resulting in anomaly scores. These scores are subsequently used
by AD meta-learning to calculate the loss and update the model
parameters. As shown in Figure 2 (b), the category-to-anomaly
network extracts image and text features of the query samples and𝑘-
shot normal reference samples by feature encoders. In our work, we
use CLIP as the visual and text encoders. The category-to-anomaly
network constructs an image-image anomaly discriminator based
on the feature pyramid and an image-text anomaly detector based
on a query-reference feature differentiator, to detect anomalous
information from the multimodal semantic information.

3.2 Task Construction in AD Meta-Learning
Similar tomost few-shot learningmethods, MetaCAN is first trained
on an auxiliary dataset and then evaluates it on a separate test
dataset. The key difference is that our approach selects 𝑘-shot sam-
ples from the test set as prompts without requiring any retraining.
In contrast, other methods use the 𝑘-shot samples for fine-tuning.
The comparison of data construction between existing few-shot
AD methods (i.e., WinCLIP and InCTRL) and AD meta-learning is
shown in Table 1. Before training, we first constructed the training
task based on the auxiliary training dataset. To ensure that the
model considers the optimization directions for different categories
of AD during training, AD meta-learning divides the auxiliary
dataset D = {X,Y} into 𝑁 tasks according to the 𝑁 types of ob-
jects, denoted as T = {T1, . . . ,T𝑁 }. Each task T𝑖 is split into a
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Table 1: Comparison of data construction between existing methods and AD meta-learning

Methods Sample methods Training data

Existing
methods

Random
sample

Query sample 𝑥
Few-shot reference samples 𝑥𝑟

.

.

.

Query sample 𝑥
Few-shot reference samples 𝑥𝑟

AD
meta-learning

Construct tasks
by category

Task 1 T1
(category 1)

Support set 𝐷𝑠𝑝𝑡

1
Query sample 𝑥

Few-shot reference samples 𝑥𝑟

Query set 𝐷𝑞𝑢𝑒𝑟𝑦

1
Query sample 𝑥

Few-shot reference samples 𝑥𝑟
.
.
.

.

.

.
.
.
.

Task N T𝑁
(category N)

Support set 𝐷𝑠𝑝𝑡

𝑁

Query sample 𝑥
Few-shot reference samples 𝑥𝑟

Query set 𝐷𝑞𝑢𝑒𝑟𝑦

𝑁

Query sample 𝑥
Few-shot reference samples 𝑥𝑟

support setD𝑠𝑝𝑡

𝑖
and a query setD𝑞𝑢𝑒𝑟𝑦

𝑖
, withD𝑠𝑝𝑡

𝑖
used for inner

updates andD𝑞𝑢𝑒𝑟𝑦

𝑖
used for outer updates. Our objective is to cap-

ture anomaly information, not semantic information. To facilitate
this, both the support and query sets include query samples 𝑥 and
𝑘 reference samples 𝑥𝑟 , (known as 𝑘-shot), along with normal and
abnormal text prompts.

3.3 Category-to-Anomaly Network
The category-to-anomaly network aims to capture abnormal infor-
mation in the multimodal representations derived from the CLIP. It
primarily consists of an image-image anomaly discriminator and
an image-text anomaly detector to learn anomalies from multiple
modality (i.e., image-image, image-text).
Image-Image Anomaly Discriminator To capture richer anom-
aly information, inspired by the feature pyramid [22], we propose
an image-image anomaly discriminator that extracts multi-level fea-
tures to capture richer anomaly information, allowing it to fit differ-
ent categories of AD. Specifically, we first utilize the visual encoder
ViT of CLIP to extract low-level, mid-level, and high-level features
for any query sample 𝑥 and its 𝑘-shot normal reference samples 𝑥𝑟 ,
resulting in the feature pyramid E = {E𝑙𝑜𝑤 , E𝑚𝑖𝑑𝑑𝑙𝑒 , Eℎ𝑖𝑔ℎ} for the
query sample 𝑥 and E𝑟 = {E𝑟

𝑙𝑜𝑤
, E𝑟

𝑚𝑖𝑑𝑑𝑙𝑒
, E𝑟

ℎ𝑖𝑔ℎ
} for the reference

samples 𝑥𝑟 . These feature pyramids enrich the representation of
both the query and reference samples, effectively increasing the
exposure of anomalous information.

Once obtaining these richer representations, we input them into
the image-image anomaly discriminator. The discriminator calcu-
lates the difference between the query and reference samples based
on their three levels of features to measure the discrepancies among
the query samples. We use low-level features as an example to il-
lustrate how features are converted into anomaly information. The
low-level features of the query sample and the concatenated 𝑘-shot
reference samples are denoted as E𝑙𝑜𝑤 ∈ R𝐿×𝐷 and E𝑟

𝑙𝑜𝑤
∈ R𝑘𝐿×𝐷 ,

with 𝐿 and 𝐷 represent the number and dimension of the features
respectively. For each feature e ∈ R1×𝐷 in the features E𝑙𝑜𝑤 of the
query sample , we calculate its similarity with E𝑟

𝑙𝑜𝑤
to identify the

𝑘 most similar features.

c = 𝑡𝑜𝑝𝑘 ⟨e, E𝑟
𝑙𝑜𝑤

⟩, (1)

where c = {𝑐1, 𝑐2, . . . , 𝑐𝑘 } represents the cosine similarity between e
of the query sample and the 𝑘-shot features in the reference sample
that are most similar to e. ⟨, ⟩ denotes the cosine similarity function.

After obtaining the similarity scores c between the query and
the reference samples, we convert them into anomaly scores for
the feature e of query sample:

𝑚 = 0.5 × (1 − 1
𝑛

𝑘∑︁
𝑗=1

𝑐 𝑗 ), (2)

where 𝑐 𝑗 represents 𝑗-th element in c. In this way, for E𝑙𝑜𝑤 =

{e1, ..., e𝐿}, we obtain an anomaly map m𝑙𝑜𝑤 ∈ [0, 1]1×𝐿 , with
{𝑚1, ...,𝑚𝐿} .

Finally, we take the maximum of m𝑙𝑜𝑤 as the anomaly score for
the low-level features:

𝑠𝑙𝑜𝑤 =𝑚𝑎𝑥 (m𝑙𝑜𝑤), (3)

where 𝑠𝑙𝑜𝑤 represents the low-level anomaly score of 𝑥 , with higher
values indicating a higher degree of anomaly.

Similarly, we obtain the anomaly scores 𝑠𝑚𝑖𝑑𝑑𝑙𝑒 and 𝑠ℎ𝑖𝑔ℎ for the
mid-level and the high-level features respectively. Then we combine
these three levels of features to get the final anomaly score:

𝑠𝐼 𝐼 = 𝑠𝑙𝑜𝑤 + 𝑠𝑚𝑖𝑑𝑑𝑙𝑒 + 𝑠ℎ𝑖𝑔ℎ . (4)

Image-Text Anomaly Detector To obtain anomalies from image-
text information, existing methods [14, 43] achieve AD by directly
calculating the similarity between the class token and text em-
beddings. For example, their text prompt is “A photo of a perfect
{category}”, “A photo of a damaged {category}”, where {category}
can refer to different object types. However, both the class token
and the text contain redundant category information. To avoid the
excessive influence of category information on anomaly detection,
we discard category information in image-text anomaly detector.

To ensure that the prompt text is not influenced by category,
we replace the {category} with object. Our normal prompt = “A
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photo of a perfect object, ..., A photo of a flawless object”; abnormal
prompt = “A photo of a damaged object, ..., A photo of an object
with flaws” (Detailed prompts are presented in Appendix A). We
then use CLIP’s text encoder to obtain the text embeddings T𝑎 and
T𝑛 of the normal and abnormal prompts, respectively. Similarly, to
ensure that the visual embeddings are not influenced by categories,
we do not use the class tokens. Due to the fact that high-level
features contain more detailed semantics and can be aligned with
the text information, we compare the high-level features of the
query sample with those of the reference samples by calculating
the difference. This difference is then combined with the prompt
text to capture the anomaly information of the query sample.

First, we input the high-level features Eℎ𝑖𝑔ℎ of the query sample
and the high-level features set E𝑟

ℎ𝑖𝑔ℎ
= {E𝑟1

ℎ𝑖𝑔ℎ
, . . . , E𝑟 𝑗

ℎ𝑖𝑔ℎ
, . . . , E𝑟𝑘

ℎ𝑖𝑔ℎ
}

of 𝑘-shot reference samples into the feature differentiator to learn
the differential feature D for a query sample.

D = W𝑇
2 (W

𝑇
1 (Eℎ𝑖𝑔ℎ ⊖ 1

𝑘

𝑘∑︁
𝑗=1

(E𝑟 𝑗
ℎ𝑖𝑔ℎ

))), (5)

where W1 and W2 is the learned multi-layer perceptron that maps
the image differential features to the same dimension as the text
embedding. ⊖ denotes element-wise subtraction.

Next, we align the image differential features D and text embed-
ding T𝑎,T𝑛 to get an image-text anomaly map for a query sample:

m𝐼𝑇 =
𝑒𝑥𝑝 ⟨D,T𝑎⟩

𝑒𝑥𝑝 ⟨D,T𝑛⟩ + 𝑒𝑥𝑝 ⟨D,T𝑎⟩
, (6)

where ⟨, ⟩ denote cosine similarity function. m𝐼𝑇 is the probability
map, representing the probability that the differential feature of the
query sample corresponds to the abnormal text.

Finally, the image-text anomaly detector maps the image-text
anomaly map to obtain the anomaly score 𝑠𝐼𝑇 :

𝑠𝐼𝑇 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑇
4 (W

𝑇
3m𝐼𝑇 )), (7)

whereW3 andW4 are the learnable parameters of the networks.

3.4 Training Scheme in AD Meta-Learning
To ensure that the model considers the optimization direction

for each category of AD during training, we propose an AD meta-
learning training method. This approach optimizes the model for
different types of AD simultaneously, thereby enhancing its robust-
ness across all categories.

Both the support and query sets contain query samples 𝑥 and
reference samples 𝑥𝑟 , as well as normal and abnormal prompt texts.
By inputting this data into the category-to-anomaly model, we
obtain the final anomaly score for a query sample 𝑥 :

𝑠 = (𝑠𝐼 𝐼 + 𝑠𝐼𝑇 )/4, (8)

where the divisor is 4 because 𝑠𝐼 𝐼 represents the anomaly scores
across three levels, ensuring that the anomaly score of the image
information constitutes the primary component of the final score.

Based on this score, we can get the loss for a set D𝑖 , which can
be support set D𝑠𝑝𝑡

𝑖
or query set D𝑞𝑢𝑒𝑟𝑦

𝑖
:

L𝑖 = 𝑓 (Θ,D𝑖 ) =
∑︁
𝑥∈D𝑖

L𝑏 (𝑠,𝑦𝑥 ), (9)

Algorithm 1 The AD meta-learning algorithm of MetaCAN
Input: P(T ): task distribution, S: number of iterations, N: number
of categories.
Parameter: The model parameters Θ
Output: Update parameters Θ
1: Let 𝑖𝑡𝑒𝑟 = 0.
2: while 𝑖𝑡𝑒𝑟 ≤ 𝑆 do
3: Sample training task T = {T1, . . . ,T𝑁 } from the task

distribution P(T ).
4: for 𝑖 = 1, . . . , 𝑁 do
5: Sample D𝑠𝑝𝑡

𝑖
from T𝑖

6: Compute the loss of D𝑠𝑝𝑡

𝑖
according to Eq.9

7: Inner update and obtain the Θ𝑖 (cf. Eq.10):
8: Θ𝑖 = Θ − 𝛽∇𝑓 (Θ,D𝑠𝑝𝑡

𝑖
)

9: Sample D𝑞𝑢𝑒𝑟𝑦

𝑖
from T𝑖

10: Compute the loss of D𝑞𝑢𝑒𝑟𝑦

𝑖
according to Eq.9

11: end for
12: Compute the overall loss (cf. Eq.11):
13: L =

∑𝑁
𝑖=1 𝑓 (Θ𝑖 ,D𝑞𝑢𝑒𝑟𝑦

𝑖
)

14: Outer update model parameters 𝜃 (cf. Eq.12):
15: Θ′ = Θ − 𝛼∇L
16: 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
17: end while

where L𝑏 is a combination of Binary classification loss and Focal
loss [23], 𝑓 denotes the network in MetaCAN, Θ denotes the model
parameters, and 𝑦𝑥 is the label for 𝑥 .

Next, we introduce our ADmeta-learning process, which consists
of three steps, as shown in Algorithm 1. Firstly, we input the support
set D𝑠𝑝𝑡

𝑖
of each task into the model. We calculate the gradient

based on the loss and perform an inner update to obtain Θ𝑖 :

Θ𝑖 = Θ − 𝛽∇𝑓 (Θ,D𝑠𝑝𝑡

𝑖
), (10)

where 𝛽 is learning rate of inner update, Θ𝑖 is the parameters of
the model. Note that Θ𝑖 does not actually update the parameters of
the model but serves as a reference for D𝑞𝑢𝑒𝑟𝑦

𝑖
.

Secondly, we input the query set D𝑞𝑢𝑒𝑟𝑦

𝑖
of each task into the

model and calculate the loss for each task using the previously
obtained Θ𝑖 . The losses from the test sets D𝑞𝑢𝑒𝑟𝑦

𝑖
are accumulated.

L =

𝑁∑︁
𝑖=1

𝑓 (Θ𝑖 ,D𝑞𝑢𝑒𝑟𝑦

𝑖
), (11)

where N is the number of tasks.Θ𝑖 is used as a reference forD𝑖
𝑞𝑢𝑒𝑟𝑦

to optimize the model that has already been updated once internally.
Thirdly, the accumulated loss from the test sets D𝑞𝑢𝑒𝑟𝑦

𝑖
is used

for an outer update to truly update the model parameters Θ. This
ensures that the gradient of each model optimization step simulta-
neously considers the AD updates across 𝑁 categories.

Θ′ = Θ − 𝛼∇L, (12)

where 𝛼 is learning rate of outer update, Θ′ is the updated model
parameters. The overall loss ensures that the optimization target
becomes the simultaneous optimization of AD across each category.
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Table 2: AUROC and AUPRC results (mean±std) on four real-world AD datasets under few-shot. The results are the average of 3
runs. Boldface and underlining indicate the best and second performance, respectively. MVTec AD→ * represents using MVTec
AD as an auxiliary training dataset and testing on * dataset

Industrial AD Industrial AD Medical AD Semantic AD

Set up Methods MVTec AD→ VisA MVTec AD → ELPV MVTec AD→ HeadCT MVTec AD → MNIST

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

2-shot

PaDiM 0.680±0.042 0.719±0.02 0.594±0.083 0.707±0.058 0.595±0.036 0.876±0.017 - -
PatchCore 0.817±0.028 0.841±0.023 0.716±0.031 0.840±0.031 0.736±0.096 0.913±0.002 0.603±0.009 0.482±0.025
RegAD 0.557±0.053 0.614±0.037 0.571±0.016 0.679±0.005 0.602±0.018 0.854±0.009 0.608±0.026 0.612±0.013
WinCLIP 0.842±0.024 0.859±0.021 0.726±0.020 0.849±0.010 0.915±0.015 0.975±0.012 0.612±0.007 0.614±0.005
InCTRL 0.858±0.022 0.877±0.016 0.839±0.003 0.913±0.008 0.929±0.025 0.981±0.013 0.632±0.000 0.618±0.012
IIPAD 0.858±0.018 0.880±0.017 0.816±0.034 0.905±0.022 0.828±0.009 0.941±0.002 0.595±0.009 0.582±0.022
Ours 0.896±0.020 0.905±0.020 0.863±0.003 0.930±0.002 0.937±0.014 0.983±0.004 0.653±0.002 0.620±0.008

4-shot

PaDiM 0.735±0.031 0.758±0.018 0.612±0.080 0.724±0.067 0.622±0.013 0.890±0.011 - -
PatchCore 0.843±0.025 0.860±0.016 0.756±0.073 0.871±0.042 0.805±0.006 0.941±0.009 0.497±0.044 0.504±0.025
RegAD 0.574±0.042 0.628±0.034 0.596±0.040 0.688±0.018 0.522±0.050 0.810±0.028 0.596±0.075 0.522±0.085
WinCLIP 0.858±0.025 0.875±0.023 0.754±0.009 0.864±0.004 0.912±0.003 0.974±0.002 0.632±0.004 0.611±0.011
InCTRL 0.877±0.019 0.902±0.027 0.846±0.011 0.916±0.009 0.933±0.013 0.984±0.011 0.643±0.007 0.620±0.004
IIPAD 0.877±0.012 0.891±0.010 0.826±0.034 0.914±0.021 0.856±0.021 0.951±0.010 0.621±0.011 0.619±0.004
Ours 0.905±0.011 0.916±0.012 0.870±0.007 0.934±0.004 0.943±0.002 0.984±0.001 0.681±0.005 0.628±0.008

8-shot

PaDiM 0.768±0.032 0.781±0.024 0.724±0.017 0.798±0.014 0.661±0.039 0.896±0.009 - -
PatchCore 0.860±0.026 0.873±0.022 0.837±0.016 0.915±0.007 0.817±0.034 0.931±0.006 0.526±0.019 0.530±0.037
RegAD 0.589±0.040 0.643±0.032 0.633±0.027 0.696±0.015 0.628±0.026 0.931±0.006 0.573±0.076 0.566±0.048
WinCLIP 0.868±0.020 0.880±0.021 0.814±0.010 0.897±0.007 0.915±0.008 0.975±0.003 0.641±0.004 0.616±0.006
InCTRL 0.887±0.021 0.904±0.025 0.872±0.013 0.926±0.006 0.936±0.008 0.985±0.005 0.646±0.003 0.622±0.008
IIPAD 0.885±0.010 0.908±0.008 0.857±0.007 0.933±0.003 0.868±0.007 0.961±0.004 0.625±0.015 0.624±0.005
Ours 0.911±0.009 0.920±0.011 0.881±0.003 0.940±0.002 0.951±0.008 0.986±0.002 0.694±0.009 0.638±0.006

3.5 Inference
During inference, given a test sample 𝑥𝑖 , we randomly select 𝑘-shot
normal samples as reference samples 𝑥𝑟

𝑖
from the test dataset. The

test sample 𝑥𝑖 , 𝑘-shot reference samples 𝑥𝑟
𝑖
, together with normal

and abnormal prompt text, are simultaneously fed into the category-
to-anomaly network to obtain 𝑠𝐼 𝐼 and 𝑠𝐼𝑇 . Finally, we obtain the
final anomaly score 𝑠 according to Eq.8.

4 Experiments
4.1 Experimental Setup
Datasets To verify the effectiveness of our method, we adopt six
datasets (i.e., MVTec AD [2], VisA [44], ELPV [7], HeadCT [32],
AITEX[34] andMNIST[16]) from different domains for experiments.
The MVTec AD is an industrial AD. It contains 3,629 and 1,725
samples. The VisA is also an AD dataset, including 9,621 normal
samples and 1,200 abnormal samples. The ELPV is a solar cell image
AD dataset consisting of 2,624 grayscale images. The HeadCT is
a medical diagnostic dataset comprising 100 normal samples and
100 abnormal samples. The AITEX dataset is a textile AD dataset,
which contains 140 normal samples and 105 abnormal samples. The
MNIST is a classic handwritten digit recognition dataset from 0 to
9. More details are presented in Appendix B.2
Evaluation Metrics Following existing AD methods, we use two
popular metrics Area Under the Receiver Operating Characteristic

(AUROC) and Area Under the Precision-Recall Curve (AUPRC) to
evaluate AD performance.
Comparison MethodsWe compare MetaCAN with state-of-the-
art approaches, including full-shot ADmethods, few-shot ADmeth-
ods, and few-shot AD methods based on CLIP. The comparison
methods are as follows:

• PaDiM [6] uses a Convolutional Neural Network (CNN) to
extract features for each patch, and then represents each
patch with a Gaussian distribution to obtain the anomaly
probability for each sample.

• PatchCore [31] is a traditional full-shot AD method. It pri-
marily addresses the cold-start problem in AD, which trains
the AD model by using only normal samples.

• RegAD [12] addresses the one-model-per-category limita-
tion of traditional methods by implementing a category-
agnostic few-shot AD method through image alignment.

• WinCLIP [14] is the first to explore the use of CLIP for zero-
shot and few-shot AD, achieving good AD performance with-
out training.

• InCTRL [43] utilizes CLIP’s strong few-shot capabilities to
propose a general AD model, achieving good AD on datasets
from different domains with only a few-shot normal sample.

• IIPAD [26] learns a class-shared prompt generator to detect
anomalies across multiple categories.
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Table 3: AUROC and AUPRC results (mean±std) on two
datasets under few-shot AD. Taking VisA as the auxiliary
training dataset.

Industrial AD Industrial AD

Set up Methods VisA → MVTec AD VisA → AITEX

AUROC AUPRC AUROC AUPRC

2-shot

PaDiM 0.785±0.025 0.890±0.015 0.553±0.071 0.298±0.028
PatchCore 0.858±0.034 0.939±0.012 0.646±0.070 0.403±0.083
RegAD 0.640±0.047 0.837±0.034 0.625±0.116 0.373±0.068
WinCLIP 0.931±0.019 0.965±0.007 0.701±0.015 0.522±0.006
InCTRL 0.940±0.015 0.969±0.004 0.739±0.037 0.475±0.046
IIPAD 0.942±0.014 0.967±0.008 0.721±0.020 0.493±0.014
Ours 0.946±0.005 0.971±0.002 0.765±0.041 0.533±0.084

4-shot

PaDiM 0.805±0.018 0.909±0.013 0.592±0.040 0.294±0.042
PatchCore 0.885±0.026 0.950±0.013 0.609±0.065 0.348±0.018
RegAD 0.663±0.032 0.846±0.026 0.630±0.061 0.337±0.035
WinCLIP 0.940±0.021 0.968±0.008 0.715±0.010 0.532±0.006
InCTRL 0.945±0.018 0.972±0.006 0.743±0.016 0.498±0.022
IIPAD 0.951±0.012 0.973±0.006 0.732±0.013 0.525±0.023
Ours 0.955±0.006 0.977±0.004 0.774±0.048 0.534±0.056

8-shot

PaDiM 0.820±0.016 0.927±0.012 0.612±0.011 0.297±0.009
PatchCore 0.922±0.019 0.962±0.013 0.615±0.047 0.376±0.045
RegAD 0.674±0.033 0.855±0.021 0.675±0.014 0.379±0.022
WinCLIP 0.947±0.025 0.973±0.009 0.733±0.013 0.544±0.004
InCTRL 0.953±0.013 0.977±0.006 0.766±0.016 0.499±0.006
IIPAD 0.954±0.011 0.974±0.005 0.754±0.010 0.528±0.008
Ours 0.958±0.002 0.977±0.003 0.802±0.035 0.540±0.050

Implementation Details In the stage of feature encoding, we
adopt CLIP as the backbone, with its visual encoder being the
pre-trained ViT-B/16+ [13] and its language encoder being the
pre-trained Transformer. We use Adam as the optimizer and set
the initial learning rate 𝛼 and 𝛽 to 1e-3 by default. The auxiliary
training dataset is based onMVTecAD or VisA. The batch size of the
support and query sets are set to 32 and 8 respectively. The 𝑘-shot of
reference samples is set to 2. The train epoch is set to 15. All settings
apply to all comparison methods and the experimental results are
from InCTRL’s original paper [43]. Our method is implemented
with Python 3.9 and Pytorch 2.1 framework. Detailed experimental
setup is presented in Appendix B.1.

4.2 Comparison with SOTA methods
To verify the effectiveness of our method, we compare MetaCAN
with the SOTA methods. Table 2 presents comparative results on
four datasets when auxiliary training onMVTec AD. To evaluate the
performance of MetaCAN with different auxiliary training datasets,
Table 3 also presents comparative results on two datasets when
auxiliary training on VisA.
The results of auxiliary training on MVTec AD. From Table
2, we can see that within the same domain (Industrial AD), Meta-
CAN consistently outperforms other methods under 2-shot, 4-shot,
and 8-shot. Notably, MetaCAN shows the greatest improvement
on the VisA dataset, with increases of 3.7%, 2.8% and 2.4% in AU-
ROC, respectively, compared to the SOTA method. This shows that
MetaCAN could achieve effective few-shot AD within the same

Table 4: Quantitative evaluation of modules on VisA and
ELPV under 2-shot setting, w/o represents without.

Methods VisA ELPV

AUROC AUPRC AUROC AUPRC

w/o Discriminator 0.779 0.807 0.800 0.889
w/o Detector 0.865 0.877 0.817 0.902

w/o AD meta-learning 0.856 0.857 0.819 0.899
MetaCAN(Ours) 0.896 0.905 0.863 0.930

anomaly scorelow high

sample 1

abnormal

normal

sample 2

sample 3 sample 4

normal

abnormal

Figure 3: The generated image-text anomaly maps, whose
dimensions are transformed from 1 × 225 to 15 × 15.

domain. And MetaCAN has good generalizability of few-shot AD
in industrial AD. In different domains (i.e., Medical AD and Se-
mantic AD), MetaCAN demonstrates superior performance over
other methods. Specifically, it achieves improvements of 2.1%, 3.8%,
and 4.8% on the MNIST dataset under 2-shot, 4-shot, and 8-shot
settings, respectively, compared to the SOTA method. This shows
that MetaCAN is robust not only for cross-category AD within the
Industrial AD domain but also for cross-domain AD with medical
AD and semantic AD. And MetaCAN has good generalizability of
few-shot AD in different domains.
The results of auxiliary training on Visa. Table 3 shows that
MetaCAN improves AUROC performance on both the MVTec AD
and AITEX datasets under 2-shot, 4-shot, and 8-shot settings com-
pared to other methods when using VisA as an auxiliary training
dataset. Specifically, on the AITEX dataset, MetaCAN achieves
improvements of 2.5%, 3.1%, and 3.6% over the SOTA method un-
der 2-shot, 4-shot, and 8-shot settings, respectively. This demon-
strates that MetaCAN maintains robust anomaly detection capabil-
ities across different categories, even when using diverse auxiliary
datasets, indicating minimal performance degradation when the
auxiliary dataset is altered.

4.3 Ablation Study
Quantitative Evaluation of Modules. To verify the effectiveness
of each module in MetaCAN, we design an ablation study to ex-
plore the roles of the image-text anomaly detector (Detector), the
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Figure 4: Case study from different domains. The results are obtained using MVTec AD as the auxiliary training dataset, the top
and bottom of each image indicate the predicted scores and labels.

image-image anomaly discriminator (Discriminator), and AD meta-
learning in MetaCAN. As shown in Table 4, regardless of whether
the image-image anomaly discriminator, the image-text anomaly
detector, or AD meta-learning is removed, MetaCAN’s AUROC
and AUPRC decrease on both the VisA and ELPV datasets. In com-
parison, when all modules are used together, MetaCAN achieves
optimal performance. This indicates that both modules contribute
individually, enhancing MetaCAN’s overall effectiveness. Moreover,
on the VisA dataset, the discriminator makes the greatest contribu-
tion in terms of performance, and AD meta-learning also plays a
significant role. On the ELPV dataset, all three modules of Meta-
CAN contribute almost equally. This is because the three modules
are designed to capture distinct types of information with varying
emphases.
Visualization of Image-Text AnomalyDetector. To explore how
the image-text anomaly detector operates within MetaCAN, we
visualize the image-text anomaly map of two normal and abnormal
examples from the VisA dataset. The results are shown in Figure 3.
The objective of the image-text anomaly detector is to assign higher
anomaly scores to abnormal samples compared to normal samples.
Specifically, abnormal samples should yield anomaly maps with
more high-value regions compared to normal samples. According
to Figure 3, we can observe that the anomaly values in the image-
text anomaly maps generated by two normal samples are generally
low, whereas those generated by abnormal samples contain several
regions with high anomaly values. This indicates that our image-
text anomaly detector effectively distinguishes between normal
and abnormal samples.

4.4 Case Study
To better illustrate the training and inference process of MetaCAN,
we visualized the training and testing process on data from these
three domains. As shown in Figure 4, MetaCAN employs MVTec
AD as an auxiliary training dataset and then predicts anomaly
scores for categories distinct from those in MVTec AD, using 𝑘-
shot normal samples as references in the test dataset. For randomly

selected test samples, MetaCAN achieves strong anomaly detection
performance across all three domains. Under the prompt of 2-shot
normal reference samples,MetaCAN assigns high anomaly scores to
normal samples and low anomaly scores to abnormal samples across
the three domains. This indicates that MetaCAN can effectively
predict anomaly scores for samples from various domains with
minimal reference data, demonstrating robustness in cross-domain
and cross-categories few-shot AD.

5 Conclusions
In this paper, we propose a few-shot AD method, named Meta-
CAN, designed to enhance the generalizability of few-shot AD, to
transform the category semantic information in the large vision-
languagemodels into anomalous informationwithADmeta-learning
and category-to-anomaly network. By performing auxiliary train-
ing on a single training set, MetaCAN enables the model to detect
anomalies of different categories over different domains in few-
shot scenarios. During auxiliary training, MetaCAN employs an
AD meta-learning training scheme, optimizing the category-to-
anomaly network for different AD categories through both inner
and outer updates. Additionally, the category-to-anomaly network
uses an image-image anomaly discriminator and an image-text
anomaly detector to transform the category semantic representa-
tion capability of the CLIP into anomaly detection capability. Ex-
periments on six AD datasets from different domains demonstrate
that MetaCAN achieves strong AD performance and enhances ro-
bustness across various AD categories and domains. In the future,
we consider extending MetaCAN to more domains and modalities,
e.g., video and text, not limited to images, by further unleashing
the anomaly detection capabilities of large vision-language models.
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A. Detailed Prompt Text
Our prompt text is an improved version of WinCLIP’s prompt text.
To enhance the model’s generalizability ability across categories
and domains, we replaced the category in WinCLIP’s prompt text
with the term “object.” Similar to WinCLIP [14], detailed normal
prompt and abnormal prompt are shown is Table 5, our prompt text
substitutes the [c] in the template_level text with the corresponding
[c] from state_level, resulting in normal and anomaly prompt.

B. Detailed Experimental Setup
B.1 More Detailed Implementation
In this paper, we select CLIP as the backbone model. The visual
encoder of CLIP is ViT-B/16+, and it consists of 12 layers of trans-
formers. After encoding an image with ViT-B/16+, a length of 226
and a dimension of 896 embedding is obtained, consisting of one
’CLS’ token and 225 patch tokens. The language encoder of CLIP is
also a 12-layer pretrained transformer, producing a 640-dimensional
embedding for each word. MetaCAN uses features extracted from
the 1st, 7th, and 12th layers of ViT-B/16+ to form an image fea-
ture pyramid. All experiments are conducted on the Ubuntu 22.04.1
server with hardware including Intel(R) Xeon(R) Silver 4310 CPU@
2.10GHz and 80G NVIDIA GPU A100. To evaluate the effectiveness
of MetaCAN with different auxiliary training datasets, we conduct
experiments in two configurations: (1) auxiliary training is con-
ducted on MVTec AD, followed by testing on VisA, ELPV, HeadCT,
and MNIST; (2) auxiliary training is conducted on VisA, followed
by testing on MVTec AD and AITEX.

B.2 Datasets Details
Weuse six datasets (i.e. MVTec AD [2], VisA [44], ELPV [7], HeadCT
[32], AITEX [34] and MNIST [16] ) from different domains (i.e.
Industrial AD, Medical AD and Semantic AD) for experiments.

• The MVTec AD dataset is an widely used industrial AD
dataset. It contains a total of 5,354 samples, with 3,629 in the
training set and 1,725 in the test set. There are 15 categories
in total. And we use the test sets for evaluation.

• The VisA dataset is also a commonly used AD dataset, with a
total of 10,821 samples, including 9,621 normal samples and
1,200 abnormal samples. There are 12 categories of objects.
We only use the test set for evaluation.

• The ELPV dataset is a solar cell image AD dataset consisting
of 2,624 grayscale images, including normal and abnormal
solar cell images. We only use the test set for test.

• The AITEX dataset is a textile AD dataset that includes seven
different textile structures. It contains 140 normal samples
and 105 abnormal samples, all of which are 4096x256 pixel
images. We use only the test dataset to eval.

• The HeadCT is a medical diagnostic dataset comprising 100
normal samples and 100 abnormal samples. Following the
approach of InCTRL, we selected 25 normal samples and 100
abnormal samples as the test set.

• The MNIST is a classic handwritten digit recognition dataset
consisting of 70,000 grayscale images representing ten digits,
from 0 to 9. In this work, we set even digits as normal, and
odd digits as anomalies.

Table 5: Detailed normal prompt and abnormal prompt

state_level
(normal)

c := “object”
c := “flawless object”
c := “perfect object”
c := “unblemished object”
c := “object without flaw”
c := “object without defect”
c := “object without damage”

state_level
(abnormal)

c := “damaged object”
c := “object with flaw”
c := “object with defect”
c := “object with damage”

template_level

“a cropped photo of the [c].”
“a cropped photo of a [c].”
“a close-up photo of a [c].”
“a close-up photo of the [c].”
“a bright photo of a [c].”
“a bright photo of the [c].”
“a dark photo of a [c].”
“a dark photo of the [c].”
“a jpeg corrupted photo of a [c].”
“a jpeg corrupted photo of the [c].”
“a blurry photo of the [c].”
“a blurry photo of a [c].”
“a photo of the [c].”
“a photo of a [c].”
“a photo of a small [c].”
“a photo of the small [c].”
“a photo of a large [c].”
“a photo of the large [c].”
“a photo of a [c] for visual inspection.”
“a photo of the [c] for visual inspection.”
“a photo of a [c] for anomaly detection.”
“a photo of the [c] for anomaly detection.”

Table 6: Complexity Comparison of Model

Method Number of parameters Inference Time (ms)

WinCLIP 0 510±3.6
InCTRL 334916 243±1.1
Our 1777615 262±1.2

B.3 Complexity of Model
To demonstrate the model parameters and inference speed of Meta-
CAN, we compare the parameter size and inference time per image
of MetaCAN with those of WinCLIP and InCTRL. The comparison
results are shown in Table 6. We can see that although our model
has many more trainable parameters, our inference speed is signifi-
cantly faster than WinCLIP, and only 20ms slower than InCTRL.
However, our accuracy has been greatly improved compared to
these two methods.
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Disclosure of AI Tools
We only use GenAI tools for grammatical checking and writing
polishing for this paper.
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