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ABSTRACT
Outlier detection is an important task in many domains and is

intensively studied in the past decade. Further, how to explain

outliers, i.e., outlier interpretation, is more significant, which can

provide valuable insights for analysts to better understand, solve,

and prevent these detected outliers. However, only limited studies

consider this problem. Most of the existing methods are based on

the score-and-search manner. They select a feature subspace as

interpretation per queried outlier by estimating outlying scores of

the outlier in searched subspaces. Due to the tremendous searching

space, they have to utilize pruning strategies and set a maximum

subspace length, often resulting in suboptimal interpretation results.

Accordingly, this paper proposes a novel Attention-guided Triplet

deviation network for Outlier interpretatioN (ATON). Instead of

searching a subspace, ATON directly learns an embedding space

and learns how to attach attention to each embedding dimension

(i.e., capturing the contribution of each dimension to the outlierness

of the queried outlier). Specifically, ATON consists of a feature em-

bedding module and a customized self-attention learning module,

which are optimized by a triplet deviation-based loss function. We

obtain an optimal attention-guided embedding space with expanded

high-level information and rich semantics, and thus outlying be-

haviors of the queried outlier can be better unfolded. ATON finally
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distills a subspace of original features from the embedding module

and the attention coefficient. With the good generality, ATON can

be employed as an additional step of any black-box outlier detector.

A comprehensive suite of experiments is conducted to evaluate the

effectiveness and efficiency of ATON. The proposed ATON signifi-

cantly outperforms state-of-the-art competitors on 12 real-world

datasets and obtains good scalability w.r.t. both data dimensionality

and data size.
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1 INTRODUCTION
Outlier detection is an important research field in data science,

which identifies uncommon data objects that deviate significantly

from the majority [23]. Data is often generated to reflect activities

in the system or observations of the entities [1], and the appearance

of outliers indicates unusual data generating process or even severe

faults and potential threats (e.g., abnormal web traffic might be

network attacks, illegal operations in the stock market can cause

https://doi.org/10.1145/3442381.3449868
https://doi.org/10.1145/3442381.3449868
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serious economic damage, and a glitch in industrial control systems

may trigger big disasters). Outlier detection algorithms are suc-

cessfully applied to these real-world scenarios, preventing various

kinds of risks without expensive human surveillance.

However, outlier detection is a half-done problem. The interpre-

tation of detected outliers is an essential complementary task. It is

hard for analysts to understand why a data object has been consid-

ered to be an outlier by solely utilizing detection results (predict

label or outlier score) but without any clues. To perceive one outlier,

analysts need to examine its behavior in every individual feature or

even every possible feature combination, which is a laborious work,

especially in high-dimensional data. Hence, it is more important to

investigate what distinguishes the queried outlier from the given

dataset and how to characterize the queried outlier, namely outlier
interpretation. This task is also referred to as outlier explanation [13],
outlier aspect mining/discovering [6, 28], outlier property detection

[2], and outlier description [14]. Given interpretations of detected

outliers, analysts can better understand these outliers and further

choose to trust or ignore them. Downstream troubleshooting and

decision-making will be more efficient. Mechanisms (systems, reg-

ulations, or policies) can also be optimized to prevent such outliers

better. This task has broad real-world application in failure diagno-

sis of cloud service systems. Further, JointCloud [32] is an emerging

architecture that empowers the cooperation among multiple clouds

to provide efficient cross-cloud services. This architecture naturally

contains complicated topology and service-calling dependencies.

Outlier detection and interpretation form an important “regula-

tory” module in JointCloud architecture to ensure the reliability of

cross-cloud services. Intelligent failure diagnosis technologies are

urgently required in JointCloud systems to automatically provide

analysts with deeper and clearer insight of outliers.

Following [17, 20], this paper also formally defines an interpre-

tation of the queried outlier as a tailored feature subspace where

the outlierness of this outlier is well exhibited. We can also cast

outlier interpretation as a problem of computing the contribution

of each feature to the outlierness of the queried outlier. Feature

subspace can be further obtained by incorporating a threshold set-

ting approach. Therefore, the ground-truth interpretation of the

queried outlier can be obtained by selecting the best subspace from

the power set of the original feature space. The queried outlier can

be easily identified in this subspace by human analysts or outlier

detectors. As shown in Figure 1 (a), the queried outlier is initially

described by three features 𝑓1, 𝑓2, and 𝑓3, and the interpretation is

feature subspace {𝑓1, 𝑓2}.
Although we have had a long list of various kinds of outlier

detectors, comparably sparse literature considers the problem of

explaining outliers detected by any outlier detector. Themainstream

of prior art is based on the score-and-search manner [6, 12, 28, 31],

which generally only leads to suboptimal results. These methods

search possible feature subspaces and compute the outlying degree

of the queried outlier in each subspace. However, they have to

employ searching strategies, impose pruning methods, and set a

maximum subspace length to handle tremendous searching space

(the number of possible subspaces increases exponentially with the

growth of data dimensionality). Therefore, they may fail to obtain

the optimal interpretation subspace. As shown in Figure 1 (b), 𝑓1 and

𝑓3 are pruned in the first level, and thus this interpretation method
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Figure 1: Ground-Truth Interpretation and Comparison Be-
tween Prior Art and the Proposed ATON. Line width of each
feature represents the contribution to the outlierness of the
queried outlier. (a) Ground-truth interpretation is obtained
by selecting the best subspace from the power set of the fea-
ture space. (b) Prior art is based on subspace searching, which
may neglect the accurate interpretation subspace because of
applied pruning methods. (c) The proposed ATON learns an
optimal attention-guided embedding space.

can only yield a suboptimal feature subspace {𝑓1, 𝑓2}, failing to

retrieve the best subspace {𝑓1, 𝑓3}.
In light of this limitation, this paper proposes a novel Attention-

guided Triplet deviation network for Outlier interpretatioN (ATON

for short). Compared with conventional subspace searching-based

approaches, ATON directly learns an embedding space and learns

how to attach attention to new dimensions. We illustrate the basic

insight of ATON in Figure 1 (c). ATON first constructs a feature

embedding module to convert original feature space ({𝑓1, 𝑓2, 𝑓3}) to
a new embedding space ({𝑓 ′

1
, 𝑓 ′

2
, 𝑓 ′

3
, 𝑓 ′

4
, 𝑓 ′

5
}). Note that these new

dimensions can be embedded with expanded high-level feature

patterns and rich semantics, and thus it is easier to capture and

analyze outlying behaviors of the queried outlier in this embedding

space. We then propose a customized self-attention learning mod-

ule to attach attention to each new embedding dimension (feature

𝑓 ′
1
, 𝑓 ′

3
, and 𝑓 ′

5
are with higher attention coefficient). This module

learns the contribution of each dimension to the outlierness of the

queried outlier. In ATON, the queried outlier is combined with

heuristically sampled informative normal data to generate a group

of triplets. We propose a triplet deviation-based loss function, which

estimates the separability of the queried outlier and its normal coun-

terparts within the triplets. The feature embedding module and

the self-attention module can then be constantly optimized to find

an optimal embedding space with attached attention. It is note-

worthy that ATON has a continuous solution space. By contrast,

the solution space is generally discretized (each feature is either

retained or removed) in prior art. Arguably, it is a superiority be-

cause fine-grained optimization procedures can generally produce

better results. Feature weights of original space can be finally dis-

tilled from the embedding module and the learned feature attention

coefficient (original feature 𝑓1 and 𝑓3 have higher weight). Inter-

pretation subspace {𝑓1, 𝑓3} can then be derived by incorporating a

proposed threshold setting approach.
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Overall, our main contributions are summarized as follows:

• We propose an outlier interpretation method ATON hav-

ing good generality. ATON is model-agnostic, i.e., it can be

employed as an additional step to explain outliers detected

by any black-box outlier detection algorithm. ATON is also

domain-agnostic, i.e., it suits for data from various domains.

• ATON transforms the original feature space to an embed-

ding space with expanded high-level information and rich

semantics by harnessing the representation power of neural

networks. In this converted embedding space, the contribu-

tion of each dimension to the outlierness of the queried out-

lier is automatically learned by the customized self-attention

learning module.

• ATONobtains good scalability since it avoids time-consuming

subspace searching process. Besides, ATONgenerates triplets

by only sampling limited informative normal data. As a re-

sult, ATON has linear time complexity w.r.t. data size (in

datasets with fixed ratios of queried outliers).

• ATON is evaluated by a comprehensive suite of experiments

with good reproducibility
1
. To the best of our knowledge, it

is the first work that releases the ground-truth outlier inter-

pretation annotations of real-world datasets, which fosters

further research on this practical problem.

Extensive experiments show that ATON achieves impressive

performance leap over the state-of-the-art competitors. We also use

case studies to visually demonstrate interpretation quality. Ablation

study validates the significance of each key design of ATON. We

then investigate the effect of hyper-parameters and give recom-

mended settings. ATON obtains good scalability w.r.t. both data

dimensionality and data size in scale-up test.

2 RELATEDWORK
Outlier detection is intensively studied by the community in the past

decade. There are various kinds of outlier detection algorithms, e.g.,

probability-based methods [15], ensemble-based methods [16, 35],

and deep learning-based methods [22, 24]. Note that some detectors,

e.g., [4, 5], also consider the interpretability of the detected outliers,

and some categorical-data-oriented outlier detectors [10, 33, 34]

have intrinsic interpretable results. However, they cannot explain

the detection results produced by any black-box detectors.

By contrast, limited studies consider model-agnostic outlier inter-

pretation. Prior art generally utilizes score-and-search manner. The

methods in this research line search a subspace where the queried

outlier obtains the highest outlier score. They propose new efficient

outlying scoring functions combining with some searching strate-

gies. For example, Duan et al. [6] introduce OAMiner that employs

kernel density estimation as scoring function and uses a pruning

method based on anti-monotonicity properties. The work of [31]

proposes two outlying scoring functions (density Z-score and isola-

tion path length) and employs beam search. Keller et al. [12] use the

adaptive subspace searching based on random subspace sampling.

A very recent method, SiNNE [28], computes isolation score using

the nearest neighbor ensemble and also uses beam search. Kuo

and Davidson [14] introduce a constraint programming approach,

which can also be deemed as a subspace searching process. These

1
Our source code is available at https://github.com/xuhongzuo/outlier-interpretation.

subspace searching-based methods might fail to obtain an accurate

interpretation subspace because of the applied searching strate-

gies and pruning methods. They also need to restrict a maximum

subspace length in practical usage.

Some methods attempt to obtain more efficient interpretation

by employing feature selection techniques and sparse classifiers.

COIN [17] maps the interpretation task to a classification problem.

It trains a set of ℓ1-norm classifiers that separate augmented outlier

data from clusters of nearby normal data. The linear weights in

classifiers are used to explain the queried outlier. The work in [20]

employs feature selection techniques and classifiers to separate the

queried outlier and its surroundings. However, these two methods

might still fail to obtain sufficient performance because: (i) They

augment the queried outlier to form a hypothetical class so that

the classifier can work properly, which means the quality of data

augmentation largely determines the effectiveness of interpretation;

and (ii) A powerful classifier can still yield good classification results

even if in a low-quality feature subspace.

There are some approaches producing some new forms of expla-

nation, e.g., focus plot (2-d scatter plot) in [9], packs (hyper-ellipsoid

in a feature subspace) in [19], and feature sequences in [30]. Besides,

decision tree has intrinsic explanation ability, which is employed

to extract explanation rules in [13, 25]. There are also some model-

specific or domain-specific outlier interpretation methods. The

method in [11] is tailored for one-class SVMs, which “neuralizes”

the predictions and uses deep Taylor decomposition to obtain ex-

planations. The outliers detected by GRU-based autoencoder are

explained in [7]. An outlier contribution explainer is proposed in

[36] especially for cyber-security applications.

Interpretable machine learning is a related field, which studies

possible explanations for the predictions generated by machine

learning algorithms. LIME [27] is a well-known explainer for arbi-

trary classifier prediction. LIME learns a local interpretable model

around the prediction to infer the explanations. A more advanced

approach SHAP is proposed in [18]. SHAP is a game theoretic ap-

proach to learn the optimal Shapley values (the contribution of

each feature) as explanations.

3 PROBLEM STATEMENT
Let X = {𝒙1, 𝒙2, · · · , 𝒙𝑁 } be an input dataset containing a set of

data objects, where |X| = 𝑁 . Each data object 𝒙 ∈ X is a real-

valued feature vector described by 𝐷 features, i.e., 𝒙 ∈ R𝐷 . The
feature set is denoted as F = {𝑓1, 𝑓2, · · · , 𝑓𝐷 }. The data objects in a

small subset of dataset X𝑜 ⊂ X are outliers, where |X𝑜 | = 𝑁𝑜 and

𝑁𝑜 ≪ 𝑁 .

Outlier interpretation is to explain why a data object is an out-

lier. Inspired by the taxonomy of interpretable machine learning

[21], this problem can also be divided into model-agnostic and

model-specific interpretation based on whether the queried outlier

is detected by a specific outlier detection model. This paper aims to

address the model-agnostic outlier interpretation problem because

the approaches in this category have better generality and can be

incorporated with any existing outlier detector.

Following [17, 20, 28], We formally define the outlier interpreta-

tion task as follows:

https://github.com/xuhongzuo/outlier-interpretation
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Definition 3.1 (Outlier interpretation). Given a dataset X
and a queried outlier set X𝑜 ⊂ X, outlier interpretation 𝑂𝐼 is to find
a tailored explanatory subspace E ⊆ F for each outlier in query
set 𝒐 ∈ X𝑜 . The outlierness of the queried outlier 𝒐 can be explicitly
unfolded in this feature subspace E such that human analysts or
outlier detection algorithms 𝑂𝐷 can easily and accurately predict the
queried outlier. This procedure is formally represented as:

E = 𝑂𝐼 (𝒐 |X), 𝒐 ∈ X𝑜 (1)

s.t.
𝑂𝐷 (𝒐E |XE ) = 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 (2)

whereXE and 𝒐E denote data object(s) described in the interpretation
feature subspace E .

Generally, features of real-world tabular datasets have real se-

mantics. For example, in the field of AI for IT operations (AIOps),

the data records in distributed tracing systems are response times

of different services. Also, in the medical diagnosis area, the fea-

tures in the Breast Cancer dataset are computed from a digitized

image of a breast mass to describe characteristics of the cell nuclei.

Therefore, given the behavior (feature value) in selected features,

the human analysts can locate the root cause of an outlier, thereby

explain this outlier.

Interpretation methods can also output feature weight as an

explanation apart from directly producing explanatory subspace.

The feature weight is seen as the contribution of each feature to the

outlierness. These methods can further yield explainable feature

subspace when combining with a threshold setting approach. It is

similar to the problem setting of outlier detection, i.e., some outlier

detectors output outlier scores for data objects while the other

detectors directly differentiate whether a data object is an outlier.

4 OUTLIER INTERPRETATION NETWORK
In this section, we first introduce the network architecture of ATON,

then present the specific methodology, and finally give the pseudo

code of our algorithm.

4.1 Network Architecture
Based on the problem definition of outlier interpretation, we aim

to learn a feature subspace to interpret each queried outlier, where

the target outlier can be easily separated from normal data. We in-

troduce an Attention-guided Triplet deviation network for Outlier

interpretatioN (ATON for short). ATON uses the proposed triplet

deviation-based loss to optimize the feature embedding module and

the customized self-attention learning module. In embedding space

with attached attention, ATON attempts to differentiate the queried

outlier and its normal counterparts of each generated triplets. The

interpretable feature subspace of this queried outlier is finally dis-

tilled from the optimized feature embeddingmodule and the learned

self-attention coefficient. The network structure of ATON is shown

in Figure 2, which consists of four main components:

• Given a queried outlier 𝒐 and the dataset X, we first select
normal data objects from dataset X to generate a set of

triplets T as training data, i.e., T = {⟨𝒐,𝒎, 𝒏⟩}, 𝒎, 𝒏 ∈ X.
• Subsequently, the data objects in the generated triplets are

converted to a new embedding space by the feature em-

bedding module 𝜙 : R𝐷 → R𝑑 . We get a set of embedded

Mask

Dataset X

Reversely Mask

Triplet Deviation-Based Loss

ATON

Queried Outlier oo

Triplet Generator

Distill original feature weight

Triplets T

Triplets Te

Triplets T a Triplets Ta

Attention Coefficient aa

Customized Self-Attention Learning Module S

Feature Embedding Module P



Figure 2: Network Architecture of ATON

triplets T𝑒 = {⟨𝜙 (𝒐), 𝜙 (𝒎), 𝜙 (𝒏)⟩}. High-level information

and rich semantics are expected to be expanded and directly

demonstrated in this embedding space.

• ATON constructs a customized self-attention learning mod-

ule 𝜓 : ⟨R𝑑 ,R𝑑 ,R𝑑 ⟩ → R𝑑 afterward. Attention coeffi-

cient vector 𝒂 ∈ R𝑑 is derived from the embedded triplets

𝒂 = 𝜓 (T𝑒 ). 𝒂 is a real-valued vector that measures the contri-

bution of each embedding dimension to the outlierness of the

queried outlier. ATON masks each element in triplets using

attention coefficient vector 𝒂 and outputs a set of attention-

guided triplets T𝑎 =
{
⟨𝒐attn,𝒎attn, 𝒏attn⟩

}
. We also obtain

another set of triplets
¯T𝑎 =

{
⟨𝒐r-attn,𝒎r-attn, 𝒏r-attn⟩

}
that is

reversely masked by the attention coefficient.

• ATON then calculates triplet deviation-based loss to assess

triplet separability in masked data T𝑎 and reversely masked

data
¯T𝑎 . Parameters in previous steps are constantly opti-

mized using this loss function.

4.2 Specific Model Design
In this section, we introduce the specific model design of ATON.

Four main components of the network are presented in turn.

4.2.1 Triplet Generator. A set of triplets T is first generated as

training data. These triplets are utilized to learn the separability

of the queried outlier from the normality. Thus, the first triplet

position is fixed as the queried outlier 𝒐, and the rest two positions

should well represent the normal data. We simultaneously consider

two factors, namely general normality of the dataset and the local

normality of the queried outlier. Two candidate sets are formed for

the rest two positions. X
random

denotes a candidate set of normal

data objects randomly sampled from the full dataset, representing

the general normality. In terms of the local normality, the nearest

neighbor normal data objects of the queried outlier 𝒐 are gathered
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in a candidate setX
neighbor

. We use Euclidean distance to define the

distance of two data objects when searching the nearest neighbors.

The set of generated triplets T is denoted as follows:

T =
{
𝛾
��𝛾 = ⟨𝒐,𝒎, 𝒏⟩,∀𝒎 ∈ X

random
,∀𝒏 ∈ X

neighbor

}
. (3)

For simplicity, two candidate sets (X
random

and X
neighbor

) are re-

stricted to be with the same cardinality. We use 𝑟 to denote this

sampling size, which is a parameter of ATON. Thus, the size of gen-

erated triplet set T is 𝑟2
. Abundant training data normally brings

better performance, but too large 𝑟 also results in low efficiency.

We conduct a parameter test in Section 5.5 to investigate the effect

of this parameter empirically.

4.2.2 Feature Embedding Module. Feature embedding is to convert

the original features to a new feature space by a mapping function

𝜙 . ATON further attaches attention to each embedding dimension.

Thus, We need to transform the attention coefficients of these

embedding dimensions back to the original features by following

some rules. This requirement should be considered when specifying

this component.

ATON uses one learnable linear layer as feature mapping func-

tion 𝜙 , parameterized by a weight matrix W ∈ R𝑑×𝐷 , to obtain a

new embedding space with powerful representation ability. Simple

linear transformation can also ensure the scalability of ATON.

Data object 𝒙 is transferred to a new embedding space via feature

mapping function 𝜙 as:

𝜙 (𝒙) =


W(1, 1)𝒙 (1) +W(1, 2)𝒙 (2) + · · · +W(1, 𝐷)𝒙 (𝐷)
W(2, 1)𝒙 (1) +W(2, 2)𝒙 (2) + · · · +W(2, 𝐷)𝒙 (𝐷)

. . .

W(𝑑, 1)𝒙 (1) +W(𝑑, 2)𝒙 (2) + · · · +W(𝑑, 𝐷)𝒙 (𝐷)

 (4)

where W(𝑖, 𝑗) indicates the element in the 𝑖-th row and the 𝑗-th

column of matrix W, and 𝒙 (𝑖) denotes the 𝑖-th element of vector

𝒙 . Each dimension can be seen as a linear pattern (combination) of

the original feature space.

All the data objects in generated triplets are embedded into this

new feature space to derive an embedded triplet set T𝑒 as:

T𝑒 =
{
𝛾 ′
��𝛾 ′ = ⟨𝜙 (𝒐), 𝜙 (𝒎𝑖 ), 𝜙 (𝒏 𝑗 )⟩, 𝑖, 𝑗 ∈ {1, 2, · · · , 𝑟 }

}
. (5)

The dimensionality of the embedding space 𝑑 is a parameter of

ATON. The network can generate plentiful linear combinations

of original features when giving a larger 𝑑 . An empirical study of

parameter 𝑑 is also included in Section 5.5.

4.2.3 Customized Self-Attention Learning Module. A customized

self-attention learning module𝜓 is constructed in this step, which

aims to measure the contribution of each new embedding dimen-

sion to the outlierness of the queried outlier. Attention mechanism

has been a de facto standard in many sequence-based tasks, e.g.,

language modeling and machine translation, to focus on the most

relevant part of the input to make decisions [3].

We construct a single-hidden-layer feedforward neural network

as the customized self-attention learning module𝜓 in ATON. Hid-

den layer 𝑓1 is with ℎ1 hidden units, which is parameterized by

weight matrix W𝑎 ∈ Rℎ1×3𝑑
and ReLU activation function 𝜎 . We

directly set ℎ1 = ⌊1.5𝑑⌋ for simplicity. The weight matrix of out-

put layer 𝑓2 is denoted asW′𝑎 ∈ R𝑑×ℎ1
. This self-attention learning

module finally uses a column-wise min-max normalization function

𝛿 to scale the attention coefficient to [0, 1].
Before entering the self-attention module, all the triplets are first

flattened to vectors. Triplet ⟨𝜙 (𝒐), 𝜙 (𝒎𝑖 ), 𝜙 (𝒏 𝑗 )⟩ in T𝑒 is converted
to an individual vector 𝒖 ∈ R3𝑑

as:

𝒖 = [𝜙 (𝒐)∥𝜙 (𝒎𝑖 )∥𝜙 (𝒏 𝑗 )] (6)

where [·∥ · ∥·] represents vector concatenation. We obtain a set of

flattened vectors with size |T𝑒 | = 𝑟2
. A matrix U ∈ R3𝑑×𝑟 2

is used

to contain all the vectors derived from the triplet set.

Fully expanded out, the network first produces an attention

matrix A ∈ R𝑑×𝑟 2

as follows:

A = 𝜓 (T𝑒 ) = (𝑓1 ◦ 𝑓2) (T𝑒 )

= 𝛿

(
W′𝑎

(
𝜎 (W𝑎U)

) )
.

(7)

The attention coefficient vector 𝒂 ∈ R𝑑 is the average of the columns

of matrix A:

𝒂 =
1

𝑟2

𝑟 2∑︁
𝑖=1

A(·, 𝑖) (8)

whereA(·, 𝑖) is the 𝑖-th column of matrixA indicating the attention

coefficient of one triplet.

Attention weight is directly derived from the triplets. Hierar-

chical complex interactions and relationships of intra-object and

inter-object dimensions are modeled during the attention learning

process thanks to the connectivity property of neural network.

After getting attention coefficient vector 𝒂, the data objects in
triplets can be masked to create an attention-guided space. Note

that we also use attention coefficient vector 𝒂 to reversely mask the

triplets. ATON yields attention-guided triplet set T𝑎 and reverse-

attention-guided triplet set
¯T𝑎 as follows.

T𝑎 =
{
𝛾 ′′

��𝛾 ′′ = ⟨𝒂 ⊗ 𝜙 (𝒐), 𝒂 ⊗ 𝜙 (𝒎𝑖 ), 𝒂 ⊗ 𝜙 (𝒏 𝑗 )⟩, 𝑖, 𝑗 ∈ {1, 2, · · · , 𝑟 }
}

¯T𝑎 =
{
𝛾 ′′

��𝛾 ′′ = ⟨𝒂 ⊗ 𝜙 (𝒐), 𝒂 ⊗ 𝜙 (𝒎𝑖 ), 𝒂 ⊗ 𝜙 (𝒏 𝑗 )⟩, 𝑖, 𝑗 ∈ {1, 2, · · · , 𝑟 }
}

(9)

where ⊗ denotes element-wise product and 𝒂 = 1 − 𝒂 denotes

reverse attention.

Attention-guided triplets are obtained by highlighting important

dimensions. Reverse attention handles the triplets in an opposite

manner, which sheds light on these unimportant dimensions. We

use reverse attention to check these neglected dimensions and

render the attention module to find important dimensions as com-

prehensive as possible.

4.2.4 Triplet Deviation-Based Loss Function. The previous compo-

nents are learnable after setting an objective. The queried outlier

and its normal counterparts in triplets are expected to be sepa-

rated clearly in the embedding space with attached attention. Data

objects reversely masked by attention coefficient should be indis-

tinguishable. Parameters in the ATON network are optimized to

achieve these two targets. We define the loss of transferred triplet

𝛾 ′′ as follows:

𝐿 = 𝛼
∑︁

𝛾 ′′∈T𝑎
𝜆(𝛾 ′′) + (1 − 𝛼)

∑︁
𝛾 ′′∈ ¯T𝑎

¯𝜆(𝛾 ′′) (10)
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where 𝜆(𝛾 ′′) is the loss term of the triplet masked by attention

coefficient, while
¯𝜆(𝛾 ′′) represents the loss term of the reversely

masked triplet.

The concept of triplet loss [29] is employed to calculate the loss

term 𝜆(𝛾 ′′):

𝜆(𝛾 ′′) = 𝜆
(
⟨𝒐attn,𝒎attn

𝑖 , 𝒏attn𝑗 ⟩
)

= max

(
𝑑 (𝒎attn

𝑖 , 𝒏attn𝑗 ) − 𝑑 (𝒎
attn

𝑖 , 𝒐attn) + 𝑒, 0
) (11)

where ⟨𝒐attn,𝒎attn

𝑖
, 𝒏attn

𝑗
⟩ = ⟨𝒂⊗𝜙 (𝒐), 𝒂⊗𝜙 (𝒎𝑖 ), 𝒂⊗𝜙 (𝒏 𝑗 )⟩, 𝑑 (·, ·)

represents the Euclidean distance, and 𝑒 is the margin.

This loss term is minimized to push 𝑑 (𝒎attn

𝑖
, 𝒏attn

𝑖
) to be smaller

and𝑑 (𝒎attn

𝑖
, 𝒐attn) to be larger than𝑑 (𝒎attn

𝑖
, 𝒏attn

𝑖
)+𝑒 , whichmeans

attention-guided embedding space is optimized to make the queried

outlier be isolated from the normal data. It is noteworthy that this

triplet loss term uses a relative concept of separability rather than an

absolute manner. It provides a referenced distance between normal

data, which can help ATON judges whether the queried outlier is

effectively distinguished from normal data more accurately.

The loss term of reverse-attention-guided triplet
¯𝜆(𝛾 ′′

𝑖
) is defined

as follows:

¯𝜆(𝛾 ′′) = ¯𝜆
(
⟨𝒐r-attn,𝒎r-attn

𝑖 , 𝒏r-attn𝑗 ⟩
)

=
��𝑑 (𝒎r-attn

𝑖 , 𝒏r-attn𝑗 ) − 𝑑 (𝒎r-attn

𝑖 , 𝒐r-attn)
�� (12)

where ⟨𝒐r-attn,𝒎r-attn

𝑖
, 𝒏r-attn

𝑗
⟩ = ⟨𝒂 ⊗ 𝜙 (𝒐), 𝒂 ⊗ 𝜙 (𝒎𝑖 ), 𝒂 ⊗ 𝜙 (𝒏 𝑗 )⟩.

This loss term is optimized to narrow the difference between

distances of outlier-normal and normal-normal data objects within

reverse-attention-guided triplets. We use this loss term to guaran-

tee that the dimensions receiving less attention in the customized

self-attention learning module are unimportant indeed. These di-

mensions should have very limited contributions to the separability

of the queried outlier. In other words, the self-attention learning

module can be forced to capture important dimensions as compre-

hensive as possible.

The coefficient of the loss function, i.e., 𝛼 , is a hyper-parameter

of ATON to adjust the weight on these two terms. We normally

set 𝛼 larger than 0.5 because the main objective is to learn a new

space that can effectively separate the target outlier from its normal

counterparts. In an extreme case, if 𝛼 is 0, ATON will give all the

dimensions with full attention to decrease the loss term
¯𝜆(𝛾 ′′). We

further detailedly examine the effect of 𝛼 in Section 5.5.

ATON is optimized by Adam optimizer by adjusting parameters

in layers of the feature embedding module and the customized self-

attention learning module to minimize the loss function. Epoch

number and batch size of the learning process are hyper-parameters

of ATON, which are tested in Section 5.5. We can finally obtain an

attention-guided embedding space that the queried outlier can be

clearly separated from the normality.

4.2.5 Distilling Interpretation from ATON. To achieve the goal of
outlier interpretation, we further distill the importance of origi-

nal features from the embedding module and the customized self-

attention learning module.

The weight vector of the original feature space 𝒑 ∈ R𝐷 is com-

puted as:

𝒑 = |W∗⊤ |𝒂∗ (13)

whereW∗⊤ represents the transpose of the optimized weight ma-

trix in the feature embedding module, 𝒂∗ is the optimized attention

coefficient vector, and | · | denotes that each element is transformed

to absolute value in a given matrix. Note that the coefficients inW∗

can be positive or negative values which indicate the impacts of

original features to embedding dimensions from different directions.

And the absolute values of elements inW∗ represent the scale of
impacts. Therefore, we use absolute value to measure their impact.

If the absolute value of transformation coefficient of one feature is

large (this coefficient is either positive or negative), a little change

of the value of this feature will lead to a great change in embedding

space. After getting attention value 𝒂∗ (importance of embedding

features) and the absolute value of embedding transformation ma-

trix |W∗ | (impact of original features to embedding space), Equation

13 is to transfer attention weights of the embedding space back to

the original space.

We use ATON
′
to represent ATON combined with a proposed

threshold setting approach. ATON
′
yields a feature subspace E as

outlier interpretation result. We choose a feature subspace with the

smallest size but the weight summation is larger than a threshold,

which is represented as:

E = arg min

E⊂F, ∑
𝑓 ∈E

𝒑 (𝑓 )>𝑡
|E | (14)

where 𝑡 =

√︃
2

𝐷

∑
𝑓 ∈F 𝒑(𝑓 ) is the threshold, and |E | is the size of

the feature subspace. We use

√︃
2

𝐷
as the threshold ratio, which is

negatively correlated with the original space dimensionality. All

the features will be retained if the full dimension is 2. The threshold

ratio decreases with the increasing of the original dimensional-

ity. Fixed threshold ratio will result in a huge feature subspace if

the original data is in high-dimensional space, and thus we use

the fraction
2

𝐷
to obtain a decreasing curve. We still maintain a

relatively higher weight summation of interpretation subspace in

high-dimensional data by employing a square root function.

4.3 Algorithm of ATON
Algorithm 1 presents the procedure of ATON. For simplicity, we

do not explicitly present batch training process. In practical usage,

ATON can be trained by setting proper epoch number and batch

size. Steps (1-3) sample data into two candidate sets and generate a

set of triplets T . The network is trained in Steps (4-12). Step (6) con-

verts the original features to a new space by linear transformation

(parameterized by matrixW). Customized self-attention learning

module (parameterized byW𝑎 andW′𝑎) is in Step(7-9), which learns
attention coefficient vector 𝒂 and obtains attention-guided triplets

T𝑎 and reverse-attention-guided triplets
¯T𝑎 . Step (10-11) compute

loss 𝐿 and optimizes the network. The feature weight vector is dis-

tilled from the network in Step (13). A feature subspace is further

obtained in Step (14). ATON finally returns 𝒑 and E in Step (15).

We then analyze time complexity of some key steps. The calcu-

lation of finding the neighbor data in Step (1) incurs 𝑂 (𝑁 × 𝐷 × 𝑟 ).
Triplet set is with 𝑟2

cardinality. Step (6) takes𝑂 (𝑛_𝑒𝑝𝑜𝑐ℎ𝑠×𝑟2×𝐷×
𝑑). Attention module takes𝑂 (𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 ×𝑟2× (3𝑑ℎ1 +ℎ1𝑑)) in Step

(8). The complexity of loss function in Step (10) is 𝑂 (𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 ×
𝑟2 × 𝑑). Hyper-parameter 𝑟 is normally set below 50, and 𝑑 is 64
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Algorithm 1 ATON(X, 𝒐)
Input: X - data set, 𝒐 - queried outlier

Output: 𝒑 - interpretation feature weight vector, E - interpretation
feature subspace

1: Select neighbor 𝑟 data objects of 𝒐 into X
neighbor

2: Randomly sample 𝑟 data objects into X
random

3: T ←
{
𝛾 = ⟨𝒐,𝒎, 𝒏⟩|∀𝒎 ∈ X

random
,∀𝒏 ∈ X

neighbor

}
4: Initialize W ∈ R𝑑×𝐷 ,W𝑎 ∈ Rℎ1×3𝑑

,W′𝑎 ∈ R𝑑×ℎ1

5: repeat
6: T𝑒 ←

{
𝛾 ′ = ⟨W𝒐,W𝒎𝑖 ,W𝒏 𝑗 ⟩|𝑖, 𝑗 ∈ {1, 2, · · · , 𝑟 }

}
7: Flatten triplets to get matrix U by Equation (6)

8: A← 𝛿
(
W′𝑎

(
𝜎 (W𝑎U)

) )
9: 𝒂 ← 1

𝑟 2

∑𝑑
𝑖=1

A(·, 𝑖)
10: Generate T𝑎 and

¯T𝑎 by Equation (9)

11: 𝐿 ← 𝛼
∑
𝛾 ′′
𝑖
∈T𝑎 𝜆(𝛾

′′
𝑖
) + (1 − 𝛼)∑𝛾 ′′

𝑖
∈ ¯T𝑎

¯𝜆(𝛾 ′′
𝑖
)

12: Optimize network parameters by loss function 𝐿

13: until Reach maximum epoch number 𝑛_𝑒𝑝𝑜𝑐ℎ𝑠

14: 𝒑 ← |W∗⊤ |𝒂∗
15: Convert 𝒑 to E by Equation (14)

16: return 𝒑, E

or ⌊1.5𝐷⌋. Thus, ATON has quadratic time complexity w.r.t. data

dimensionality and linear time complexity w.r.t. data size.

5 EXPERIMENTS
In this section, we conduct experiments to answer the following

questions:

• Effectiveness: How accurate are the outlier interpretation

results computed by ATON and its contenders on real-world

datasets?

• Case Studies: Can ATON produce meaningful interpretation

results in typical cases?

• Ablation Study: Do key designs of ATON contribute to better

interpretation results?

• Parameter Test: How do the hyper-parameters influence the

interpretation performance of ATON?

• Scalability Test: Does ATON have good scalability compared

to its competitors w.r.t. dimensionality and data size?

We first introduce the experimental setup before detailing our em-

pirical findings.

5.1 Experimental Setup
5.1.1 Datasets. Twelve real-world outlier detection datasets are

used in the experiments. Datasets WineR and WineW are short for

Wine Quality (red) andWine Quality (white). These two datasets are
from Kaggle platform (https://www.kaggle.com/). Other datasets

are publicly-available at ODDS [26] (an outlier detection dataset

library). All of these datasets are with real outliers or semantic

outliers. We skip the detection process and perform model-agnostic

outlier interpretation methods to explain each real outlier.

5.1.2 Competitors. ATON outputs a feature weight vector per

queried outlier as explanation, and ATON
′
further yields interpre-

tation feature subspace by the proposed threshold setting approach.

ATON and ATON
′
are compared with two types of outlier interpre-

tation methods (Type-I: feature weight as output; Type-II: feature
subspace as output) respectively. We choose five competitors, in-

cluding both outlier interpretation methods and general classifier

explanation methods, which are introduced as follows:

• COIN and COIN
′
[17]: COIN is a state-of-the-art outlier

interpretation method that outputs a sparse feature weight

vector indicating the abnormality of each feature. We further

obtain feature subspace by only retaining features with pos-

itive weight and filtering features with zero weight, which

is denoted as COIN
′
.

• SiNNE [28]: SiNNE is the newest state-of-the-art outlier

interpretation method utilizing score-and-search manner. It

directly outputs feature subspace for each queried outlier.

• SHAP [18] and LIME [27]: SHAP and LIME are classifier

explanation methods that are commonly used in the field of

interpretable machine learning. They explain a prediction by

assigning each feature an importance value. They are used

as Type-I competitors.

5.1.3 Parameter Settings and Implementations. ATON is performed

by using sampling number 𝑟 = 30, coefficient of loss function

𝛼 = 0.8, and embedding space dimension 𝑑 = 64. The network is

trained by 10 epochs and 64 triplets per batch. The hidden layer in

the attention net has 1.5𝑑 hidden units.We use Adam optimizer with

the 0.1 learning rate and apply a early stopping mechanism during

the network training process. COIN uses default recommended

parameters. In terms of SiNNE, the width of the beam search is set

as 10, the ensemble number is 100, and the sampling number is 8.

As for SHAP and LIME, we use SVM with RBF kernel as classifier.

All the outlier interpretationmethods are implemented in Python.

The source code of COIN is released by its original authors. We

reimplement SiNNE. The classifier explanation methods SHAP and

LIME are publicly-available Python packages.

5.1.4 Ground-Truth Annotations. Evaluating outlier interpretation

task requires benchmark datasets with ground-truth annotations

(ideal interpretation feature subspace for each outlier). To the best

of our knowledge, there is no public-available real-world dataset

with such annotations. To address this gap, we propose a new la-

beling method and release the ground-truth annotations. For a

real-world dataset, we employ three different kinds of representa-

tive outlier detection methods (i.e., ensemble-based method iForest

[16], probability-based method COPOD [15], and distance-based

method HBOS [8]) to evaluate outlying degree of real outliers given

every possible subspace. As defined in Section 3, a good explanation

for an outlier should be a high-contrast subspace that the outlier

explicitly demonstrates its outlierness, and outlier detectors can

easily and certainly predict it as an outlier in this subspace. There-

fore, the ground-truth interpretation for each outlier is defined

as the subspace that the outlier obtains the highest outlier score

among all the possible subspaces. Thus, we finally get three lists

of ground truth annotations according to three selected outlier de-

tectors. Note that the original dimensionality of some datasets is

high. Such a brute-force searching process has exponential time

complexity. The number of possible subsets increases to 32,768

when a dataset has 15 dimensions, which means outlier detectors

https://www.kaggle.com/
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Table 1: Outlier Interpretation Performance of Type-I Methods. Three rows of each dataset represent interpretation performance
using the ground-truth annotations generated by different outlier detectors (iForest, COPOD, and HBOS), respectively.

DATA Precision Jaccard Index AUPR AUROC

ATON COIN SHAP LIME ATON COIN SHAP LIME ATON COIN SHAP LIME ATON COIN SHAP LIME

Pima

0.705 0.510 0.442 0.432 0.604 0.399 0.327 0.319 0.793 0.601 0.532 0.525 0.836 0.702 0.597 0.597

0.666 0.466 0.508 0.502 0.560 0.362 0.397 0.387 0.763 0.543 0.586 0.587 0.788 0.633 0.653 0.657

0.600 0.246 0.489 0.421 0.537 0.198 0.430 0.351 0.680 0.348 0.571 0.520 0.782 0.572 0.715 0.693

Vertebral

0.692 0.499 0.389 0.392 0.655 0.411 0.318 0.324 0.767 0.556 0.435 0.469 0.814 0.597 0.654 0.649

0.741 0.379 0.528 0.583 0.676 0.301 0.458 0.512 0.802 0.517 0.538 0.601 0.873 0.537 0.644 0.666

0.507 0.270 0.083 0.177 0.493 0.253 0.078 0.173 0.597 0.341 0.240 0.318 0.732 0.451 0.507 0.527

WineR

0.665 0.528 0.384 0.304 0.561 0.422 0.273 0.213 0.757 0.608 0.361 0.374 0.872 0.726 0.614 0.564

0.648 0.466 0.436 0.388 0.535 0.337 0.312 0.271 0.741 0.558 0.398 0.428 0.851 0.680 0.661 0.632

0.496 0.446 0.348 0.389 0.428 0.378 0.277 0.326 0.599 0.503 0.379 0.428 0.764 0.714 0.707 0.651

WineW

0.667 0.485 0.473 0.348 0.576 0.395 0.377 0.262 0.743 0.551 0.534 0.421 0.853 0.731 0.658 0.622

0.631 0.546 0.456 0.373 0.505 0.422 0.324 0.259 0.718 0.616 0.511 0.404 0.799 0.696 0.609 0.552

0.525 0.291 0.473 0.388 0.467 0.233 0.412 0.325 0.612 0.385 0.545 0.466 0.800 0.646 0.642 0.612

Heart

0.846 0.753 0.669 0.634 0.778 0.676 0.580 0.554 0.899 0.797 0.739 0.704 0.901 0.836 0.695 0.676

0.809 0.699 0.432 0.412 0.736 0.628 0.294 0.290 0.841 0.757 0.528 0.509 0.878 0.798 0.542 0.535

0.784 0.724 0.554 0.546 0.725 0.653 0.489 0.479 0.834 0.780 0.602 0.577 0.872 0.825 0.611 0.608

Ionosphere

0.637 0.458 0.425 0.299 0.533 0.354 0.312 0.213 0.746 0.589 0.497 0.400 0.836 0.734 0.674 0.558

0.682 0.568 0.554 0.495 0.558 0.427 0.424 0.368 0.767 0.635 0.635 0.578 0.835 0.681 0.735 0.718

0.648 0.546 0.482 0.351 0.561 0.456 0.389 0.267 0.706 0.657 0.579 0.422 0.846 0.778 0.747 0.631

letter

0.687 0.539 0.619 0.492 0.563 0.405 0.495 0.379 0.769 0.589 0.653 0.550 0.794 0.687 0.704 0.591

0.688 0.490 0.579 0.507 0.560 0.347 0.435 0.372 0.768 0.500 0.549 0.483 0.816 0.642 0.671 0.592

0.636 0.433 0.606 0.415 0.570 0.363 0.536 0.349 0.703 0.529 0.657 0.484 0.802 0.762 0.773 0.619

Arrhythmia

0.741 0.179 0.651 0.401 0.673 0.122 0.566 0.303 0.817 0.256 0.738 0.460 0.916 0.451 0.853 0.728

0.567 0.207 0.514 0.440 0.478 0.144 0.417 0.337 0.664 0.297 0.599 0.492 0.828 0.464 0.731 0.722

0.692 0.119 0.659 0.364 0.655 0.093 0.634 0.323 0.756 0.206 0.705 0.447 0.919 0.459 0.865 0.768

WBC

0.695 0.529 0.502 0.352 0.597 0.430 0.408 0.263 0.734 0.602 0.566 0.419 0.869 0.717 0.715 0.655

0.569 0.356 0.425 0.389 0.480 0.257 0.321 0.294 0.671 0.508 0.530 0.498 0.830 0.634 0.691 0.684

0.614 0.564 0.548 0.558 0.526 0.495 0.468 0.470 0.700 0.635 0.631 0.586 0.882 0.780 0.822 0.770

Satimage

0.637 0.541 0.636 0.488 0.515 0.424 0.512 0.374 0.674 0.610 0.686 0.567 0.772 0.705 0.799 0.672

0.691 0.531 0.545 0.483 0.554 0.398 0.405 0.351 0.727 0.610 0.643 0.576 0.834 0.674 0.717 0.631

0.792 0.730 0.792 0.685 0.764 0.706 0.761 0.658 0.836 0.776 0.807 0.723 0.943 0.901 0.887 0.834

Speech

0.724 0.513 0.668 0.552 0.615 0.407 0.552 0.417 0.813 0.580 0.771 0.650 0.851 0.714 0.776 0.660

0.672 0.579 0.653 0.581 0.545 0.448 0.516 0.434 0.776 0.624 0.777 0.695 0.814 0.730 0.783 0.666

0.731 0.368 0.645 0.470 0.691 0.318 0.600 0.410 0.794 0.468 0.712 0.557 0.927 0.765 0.817 0.697

Optdigits

0.699 0.631 0.686 0.677 0.568 0.488 0.555 0.544 0.816 0.690 0.814 0.787 0.807 0.741 0.809 0.768

0.708 0.605 0.634 0.669 0.575 0.461 0.488 0.538 0.825 0.647 0.767 0.766 0.795 0.719 0.727 0.729

0.817 0.452 0.869 0.795 0.772 0.414 0.834 0.748 0.863 0.580 0.910 0.850 0.913 0.886 0.942 0.903

Average 0.675 0.479 0.538 0.465 0.589 0.390 0.444 0.374 0.752 0.557 0.603 0.537 0.840 0.688 0.715 0.662

Improvement - 40.9% 25.5% 45.2% - 51.0% 32.7% 57.5% - 35.0% 24.7% 40.0% - 22.1% 17.5% 26.9%

need to perform 32,768 times on a single dataset. Therefore, we

employ PCA on datasets with over 15 features to extract 10 features.

The labeling procedure and subsequent experiments are conducted

on these processed datasets.

5.1.5 Performance Evaluation Metrics. After getting the ground

truth explanation, we can quantitatively measure the performance

of different outlier interpretation methods.

Type-II interpretation methods directly output feature subspace

for each queried outlier, they can be compared without any further

processing. We utilize three evaluation metrics, i.e., precision, recall,

and 𝐹1 score to evaluate the quality of interpretation subspaces.

Let the ground-truth subspace as G and the predicted subspace

as P, precision is defined as |G ∩ P|/|P|, recall is |G ∩ P|/|G|,
and 𝐹1 score is harmonic mean of precision and recall, i.e., 𝐹1 =

2(precision × recall)/(precision + recall).

In terms of the comparison between Type-I methods that output

feature weight, we need to transfer the computed weight vector to

interpretation feature subspace by gathering top-ranked features

with large weight into a subset. For simplicity, the subset size is

the same as the real length of the ground-truth subspace. It is a fair

competition because all the Type-I interpretation methods are incor-

porated with this transformation process. We employ precision and

Jaccard index to evaluate the transferred subspace. Note that recall

is equal to precision if we assume the ground-truth subspace and

the predicted subspace are with the same size, and thus we only use

precision here. Jaccard index is frequently utilized to evaluate the

similarity of two sets, which is calculated as |G∩P|/|G∪P|. Type-I
interpretation methods can yield a feature ranking according to the

computed weight vector. Hence, to directly and impartially evaluate

the ranking quality without determining the size of explanation
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subspace, we further employ the Area under the Precision-Recall

curve (AUPR) and the Area under the ROC curve (AUROC).

All of these metrics are computed to evaluate the interpretation

subspace of each queried outlier, and we report the average interpre-

tation performance of all the outliers in each dataset. These metrics

range from 0 to 1, and higher values indicate better performance.

Table 2: Outlier Interpretation Performance of Type-II Meth-
ods. Three rows of each dataset denote interpretation per-
formance using different ground-truth annotations. Imp. is
short for average improvement rate of 𝐹1 score.

DATA 𝐹1 score (Precision / Recall)

ATON
′

SiNNE COIN
′

Pima

0.673 (0.627 / 0.727) 0.588 (0.546 / 0.637) 0.553 (0.384 / 0.985)

0.650 (0.618 / 0.687) 0.557 (0.530 / 0.588) 0.586 (0.417 / 0.986)

0.531 (0.420 / 0.721) 0.441 (0.347 / 0.604) 0.415 (0.262 / 0.995)

Vertebral

0.628 (0.520 / 0.793) 0.597 (0.512 / 0.716) 0.468 (0.307 / 0.987)

0.703 (0.593 / 0.864) 0.565 (0.492 / 0.662) 0.524 (0.355 / 0.998)

0.406 (0.283 / 0.720) 0.389 (0.280 / 0.637) 0.329 (0.197 / 0.997)

WineR

0.661 (0.582 / 0.765) 0.505 (0.443 / 0.588) 0.429 (0.297 / 0.777)

0.652 (0.606 / 0.706) 0.493 (0.459 / 0.533) 0.450 (0.323 / 0.741)

0.481 (0.379 / 0.655) 0.361 (0.294 / 0.466) 0.408 (0.265 / 0.895)

WineW

0.619 (0.534 / 0.737) 0.531 (0.444 / 0.660) 0.436 (0.287 / 0.903)

0.605 (0.609 / 0.601) 0.528 (0.518 / 0.538) 0.497 (0.357 / 0.819)

0.479 (0.369 / 0.684) 0.388 (0.292 / 0.579) 0.380 (0.236 / 0.977)

Heart

0.730 (0.659 / 0.817) 0.738 (0.694 / 0.787) 0.619 (0.510 / 0.787)

0.770 (0.763 / 0.778) 0.578 (0.597 / 0.561) 0.664 (0.592 / 0.757)

0.656 (0.563 / 0.786) 0.630 (0.556 / 0.726) 0.576 (0.452 / 0.792)

Ionosphere

0.622 (0.520 / 0.775) 0.482 (0.457 / 0.512) 0.629 (0.613 / 0.646)

0.671 (0.644 / 0.700) 0.454 (0.523 / 0.401) 0.573 (0.643 / 0.517)

0.618 (0.507 / 0.793) 0.433 (0.414 / 0.455) 0.647 (0.610 / 0.690)

Letter

0.665 (0.668 / 0.663) 0.668 (0.698 / 0.641) 0.562 (0.398 / 0.960)

0.664 (0.672 / 0.656) 0.614 (0.649 / 0.583) 0.554 (0.390 / 0.951)

0.545 (0.446 / 0.698) 0.616 (0.513 / 0.771) 0.403 (0.254 / 0.977)

Arrhythmia

0.676 (0.551 / 0.875) 0.564 (0.448 / 0.763) 0.367 (0.225 / 1.000)

0.596 (0.507 / 0.724) 0.499 (0.417 / 0.621) 0.398 (0.249 / 0.999)

0.557 (0.401 / 0.910) 0.473 (0.333 / 0.814) 0.273 (0.158 / 1.000)

WBC

0.604 (0.482 / 0.807) 0.570 (0.464 / 0.740) 0.560 (0.532 / 0.591)

0.601 (0.516 / 0.719) 0.449 (0.390 / 0.531) 0.461 (0.494 / 0.432)

0.579 (0.445 / 0.829) 0.502 (0.393 / 0.695) 0.639 (0.580 / 0.710)

Satimage

0.585 (0.520 / 0.669) 0.429 (0.463 / 0.400) 0.429 (0.273 / 1.000)

0.644 (0.659 / 0.629) 0.410 (0.534 / 0.332) 0.539 (0.369 / 1.000)

0.541 (0.379 / 0.945) 0.442 (0.348 / 0.606) 0.247 (0.141 / 1.000)

Speech

0.693 (0.690 / 0.697) 0.718 (0.707 / 0.730) 0.525 (0.356 / 1.000)

0.653 (0.695 / 0.615) 0.654 (0.683 / 0.628) 0.549 (0.378 / 1.000)

0.615 (0.476 / 0.871) 0.626 (0.486 / 0.879) 0.342 (0.206 / 1.000)

Optdigits

0.671 (0.759 / 0.601) 0.654 (0.732 / 0.591) 0.607 (0.437 / 0.995)

0.672 (0.749 / 0.610) 0.662 (0.727 / 0.607) 0.593 (0.423 / 0.992)

0.557 (0.409 / 0.873) 0.580 (0.430 / 0.892) 0.298 (0.175 / 1.000)

Average 0.619 (0.551 / 0.742) 0.539 (0.495 / 0.624) 0.487 (0.365 / 0.885)

Imp. - 14.8% 27.1%

5.2 Effectiveness of Interpretation
5.2.1 Settings. Seven outlier interpretation methods (i.e., ATON,

ATON
′
, COIN, COIN

′
, SiNNE, SHAP, and LIME) are performed on

twelve real-world datasets. As introduced in Section 5.1.5, Type-I

methods are evaluated using four metrics (precision, Jaccard index,

AUPR, and AUROC), while Type-II methods are estimated by preci-

sion, recall, and 𝐹1 score. We independently execute these methods

ten times on each dataset and report the average performance.

5.2.2 Results and Analysis. Table 1 and Table 2 show the interpreta-

tion performance of Type-I and Type-II methods, respectively. The

best performance on each dataset is highlighted in bold. ATON is

the best performer on nine out of twelve datasets according to four

evaluation metrics and the ground-truth annotations generated by

three outlier detectors. 𝐹1 score of ATON
′
is higher than all of its

contenders on seven datasets. Averagely, ATON and ATON
′
pro-

duce significant performance leap over the state-of-the-art outlier

interpretation methods and classifier explanation methods.

ATON can generate more accurate interpretation results on real-

world datasets, i.e., outliers can be better identified by different

kinds of outlier detectors when using corresponding interpretation

subspaces. State-of-the-art outlier interpretation method COIN and

COIN
′
[17] fail to obtain sufficient results. COIN

′
tends to produce

very large interpretation subspaces and obtain a high recall, but

the generated subspace is mixed with many irrelevant features,

i.e., its precision is very low. The overall performance 𝐹1 of COIN
′

is still inferior compared to the proposed ATON. Note that the

original work of COIN [17] conducts experiments by first appending

multiple noise features and simply assuming all the original features

as correct interpretation results, which is different from our settings.

This experiment setting is somewhat reasonable when the ground-

truth interpretation subspace is unavailable. Arguably, these noise

features can be easily identified because they do not have any

correlation with the original features. Thus, COIN is ineffective

in these practical situations. We also analyze its possible flaws in

Section 2. SiNNE employs score-and-search manner, which means it

can only produce suboptimal results. It is surprising to find that the

classifier explanation method SHAP can obtain comparably good

performance. It might be due to the similar nature between classifier

explanation and outlier interpretation (i.e., both of them investigate

the effect of features to separate the queried outlier with other

normal data). SHAP is a very powerful and well-known method

to explain the classifier predictions. Nevertheless, our method still

has advantages to handle outlier interpretation task.

It is noteworthy that all the outlier interpretationmethods cannot

yield very accurate performance (e.g., over 0.9 precision or Jaccard

index). It is mainly due to two reasons: (i) Outlier interpretation is a

non-trivial task. It is very challenging to capture completely correct

feature subspace, especially in complex real-world datasets. The

ground-truth subspace normally has no more than five features, i.e.,

the precision decreases to only 0.6 when interpretation approaches

incorrectly retrieve two features; and (ii) We use three outlier detec-

tors to imitate human analysts. Different outlier detectors may favor

inconsistent feature subspace as interpretation. The ground-truth

annotations generated by outlier detectors might still be unable to

fully represent the real interpretations in practical scenarios. These

datasets are from various domains, i.e., proper domain knowledge

should be considered when interpreting outliers.

5.3 Case Studies
5.3.1 Settings: This experiment aims to visualize the effect of dif-

ferent outlier interpretation methods and further illustrates the ef-

fectiveness of ATON through some case studies. We employ MNIST

dataset in this experiment. MNIST is a popular image dataset con-

taining handwritten digits in 28×28 pixels. We first flatten the
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Figure 3: Interpretation Results of Two Outlier Images (Num-
ber 5 and 6) from MNIST Dataset. Results of Type-I out-
lier interpretation methods are shown in white background.
Darker red pixels indicate higher interpretation feature
weight. Type-II interpretation results are in blue background.
The interpretation subspace is highlighted in red.

images and obtain vectors with 784 dimensions. It is then prepro-

cessed by setting one class as normal data and sampling 20 images

from the other class as anomalies. Two imbalanced datasets are

then generated by choosing relatively similar numbers as normal

and anomaly data, i.e., 3 vs. 5 and 0 vs. 6. In this experiment, ATON

is performed by setting the hyper-parameter 𝑑 (dimension of the

embedding space) as 512 because these cases are with relatively

high original dimensions. Other hyper-parameters are kept the

same as reported configurations in the experimental setup section.

5.3.2 Results and Analysis. Figure 3 shows the interpretation re-

sults on MNIST. We also present the normal pattern image (average

value of all the normal data) and the queried outlier image using a

black background. The results of COIN
′
are omitted because they

can be directly obtained by using a single red color to tint on the

dark red pixels in the image of COIN. ATON successfully high-

lights all the pixels that the outlier behaves differently compared

to the normal pattern. The most different part, e.g., the right-most

part of number 5, is given the highest weight, as shown in the

interpretation image of ATON
′
. Note that the red color in digit 3’s

left-hand positions in ATON’s result indicates that the outlier digit

does not pass these pixels but these positions should have trace in

the normal condition, which means these pixels are also important

to distinguish digit 5 and digit 3. LIME and COIN can also find the

correct part, but SHAP cannot produce meaningful results. SiNNE

is also ineffective and inefficient in high-dimensional data. It only

reports two pixels.

5.4 Ablation Study
5.4.1 Settings. This section is to validate the significance of three

key components of ATON. ATON uses the customized self-attention

learning module to learn contributions of embedding dimensions.

We remove this component and only use triplet deviation to opti-

mize the feature embedding module. This variant is to corroborate

whether the attention module brings better interpretation results,

which is denoted as Abla-I. To test the effect of the feature embed-

ding module, the first linear transformation layer is removed, and
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Figure 4: Ablation Study Results. Outlier interpretation per-
formance (precision, Jaccard Index, AUPR, and AUROC) of
ATON and its three ablated versions on twelve datasets.

Table 3: Average Performance of Ablation Study and Improve-
ment Rates of ATON over its Ablated Versions

Method Precision Jaccard Index AUPR AUROC

ATON 0.675 0.589 0.752 0.840

Abla-I 0.653 (3.4%) 0.563 (4.4%) 0.731 (2.9%) 0.824 (1.9%)

Abla-II 0.621 (8.7%) 0.529 (11.2%) 0.701 (7.3%) 0.799 (5.1%)

Abla-III 0.541 (24.8%) 0.453 (29.8%) 0.622 (20.9%) 0.751 (11.91%)

ATON directly learns attention of the original space. This ablated

version is denoted as Abla-II. Besides, the triplet deviation-based

loss function is replaced with a multi-layer perceptron classifier

and cross-entropy loss in ablated version Abla-III. We use Abla-

III to investigate the contribution of triplet deviation loss. Other

components of these variants stay the same with ATON.

5.4.2 Results and Analysis. The interpretation performance of ATON

and its three ablated versions is shown in Figure 4. Each method cor-

responds to one circle in Figure 4, indicating the average value over

the results evaluated by three annotation lists on twelve datasets.

A summary of the average performance is presented in Table 3. We

report the average performance of all the datasets and the improve-

ment rate of ATON over its three ablated variants. ATON prevails

Abla-I on almost all the twelve datasets, which obtains noteworthy

improvement. ATON outperforms Abla-II and Abla-III on all the

datasets and achieves more significant performance improvement.

This experiment validates that each component in ATON does

contribute to better interpretation performance. It is surprising to

find that Abla-I can achieve very good results by only using fea-

ture embedding module and triplet deviation-based loss function.

This also indicates that the feature embedding module is impor-

tant for outlier interpretation. Higher-level feature patterns and

richer semantics can be explicitly unfolded in this embedding space,
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and thus the outlying behaviors of the queried outlier can be di-

rectly seized. The results of Abla-II also quantitatively validate the

significance of the feature embedding module. Note that Abla-I

has comparably or slightly better performance on two exceptions

(datasets Arrhythmia and Optdigits) compared to ATON. It is be-

cause ATON might suffer from overfitting problem on these two

datasets. Parameters of the attentionmodule, e.g., hidden layer num-

ber and hidden unit number per layer, can be further adjusted to

obtain more satisfactory performance in practical scenarios. Abla-I

might have slight advantages on a few datasets thanks to its plain

structure. However, ATON is still superior on most of the datasets,

and the attention module is also proved to be an effective compo-

nent. Triplet deviation-based loss function plays a fundamental role

in the learning process of ATON. A powerful classifier can still well

separate the queried outlier and the normality in a poor subspace,

and thus Abla-III only obtains very inferior performance.

5.5 Parameter Test
5.5.1 Settings. We investigate the influence of different hyper-

parameter settings of ATON to its interpretation performance.

There are five hyper-parameters in ATON, i.e., sampling number 𝑟 ,

coefficient 𝛼 in the loss function, dimensions of embedding space

𝑑 , network training batch size, and training epoch number.

5.5.2 Results and Analysis. Parameter test results are shown in

Figure 5. We report results on six representative datasets and the

average performance over all the twelve datasets.

Generally, interpretation performance improves when sampling

number 𝑟 and embedding dimension 𝑑 increase. Higher sampling

number 𝑟 directly leads to more abundant training data for the

network. Rich normal samples can better represent the normality.

Higher dimension means the new embedding space is with richer

semantics. Each dimension can be seen as a pattern indicating one

combination of the original features. ATON can accordingly gener-

ate more reliable interpretation with the help of a large number of

patterns. Nevertheless, the improvement of interpretation quality

is limited when 𝑟 reaches 30 and 𝑑 reaches 64. Improving normal

samples and embedding dimension can only bring bounded gain.

The normality might be fully represented with 30 sampling number.

64-dimension linear layer is powerful enough as these processed

datasets are with only less than 15 features.

As for coefficient 𝛼 in the loss function, different datasets have

inconsistent situations when changing 𝛼 , whereas ATON is nor-

mally robust to this parameter (the fluctuation is only within 0.05).

It is recommended to set 𝛼 as 0.8 for most of the datasets. The loss

function can consider both attention-guided triple-wise distance

and the behavior of triplets with opposite attention. It is better to

attach more importance to the attention-guided element but totally

ignoring the opposite attention is still inferior on some datasets.

In terms of the batch size and the epoch number, ATON performs

stably w.r.t. different configurations. The training data is 900 triplets

when the sampling number is 30. It is better to choose a larger batch

size, say 512, to guide the network to reach the global optima. Em-

pirically, ATON can be well trained by 10 epochs. The performance

is stable because we adopt the early stopping mechanism in ATON.

Jaccard IndexPrecision AUPR AUROC

Figure 5: Parameter Test Results. Outlier interpretation per-
formance (precision, Jaccard Index, AUPR, and AUROC) of
ATON with different hyper-parameters (𝑟 , 𝛼 , 𝑑 , batch size,
and epoch number).

5.6 Scalability Test
5.6.1 Settings. We create a group of synthetic datasets to evalu-

ate the scalability of different outlier interpretation methods w.r.t.

data dimensionality and data size. Five datasets are generated with

varying data dimensions ({8, 32, 128, 512, 2,048}) and fixed data size

(1,000). Another five datasets are with different data size ({1,000,

4,000, 16,000, 64,000, 256,000}) and the same data dimensionality

(32). In these datasets, outliers account for 0.5% of the whole dataset.

5.6.2 Results and Analysis. Figure 6 shows the scalability test re-

sults w.r.t. data dimensionality and data size. ATON presents out-

standing scalability compared to other outlier interpretation meth-

ods. Our method runs approximate two magnitudes faster than

SHAP and LIME on high-dimensional datasets. Neural network

can efficiently handle high-dimensional data with the help of the

development of GPU. The competitor COIN has comparably fast

execution speed w.r.t. data dimensionality, but SiNNE runs out of

memory on the dataset with 2,048 dimensions. In terms of the scale-

up test w.r.t. data size, ATON, SHAP, and LIME have linear time

complexity. ATON needs the shortest execution time because it

utilizes sampling in the triplet generator. COIN fail to return a result

within two days on the dataset containing 64,000 data objects.
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Figure 6: Scalability Test Results w.r.t. Data Dimensionality
and Data Size. SiNNE runs out of memory on the dataset with
2,048 dimensions. COIN cannot output a result within two
days on the dataset with 64,000 data objects.

6 CONCLUSION AND FUTUREWORK
This paper addresses the problem of how to explain outliers de-

tected by any black-box outlier detector. We introduce ATON, a

novel attention-guided triplet deviation network, which is model-

agnostic and domain-agnostic. Instead of following the popular

subspace searching manner, ATON directly learns an optimal em-

bedding space with attached attention to better seize the outlierness

of the queried outlier, leading to more accurate interpretation re-

sults. Extensive experiments show that ATON achieves significant

performance improvement over the state-of-the-art outlier inter-

pretation methods and the general classifier explanation methods

on real-world datasets. ATON can give meaningful interpretation

results in visualized cases. ATON also obtains outstanding scala-

bility compared to its competitors. In the future, we plan to apply

ATON to failure diagnosis of JointCloud service systems [32].
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