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ABSTRACT

Multimodal rumor detection aims at detecting rumors using
information from textual and visual modalities. The most crit-
ical difficulty in multimodal rumor detection lies in captur-
ing both the intra-modal and inter-modal relationships from
multimodal data. However, existing methods mainly focus
on the multimodal fusion process while paying little attention
to the intra-modal relationships. To address these limitations,
we propose a multimodal rumor detection method with deep
metric learning (MRML) to effectively extract multimodal re-
lationships of news for detecting rumors. Specifically, we
design the metric-based triplet learning to extract the intra-
modal relationships between rumors and non-rumors in every
modality and the contrastive pairwise learning to capture the
inter-modal relationships across multimodal. Extensive ex-
periments on two real-world multimodal datasets show the
superior performance of our rumor detection method.

Index Terms— Rumor detection, deep metric learning,
social media, multimodal learning

1. INTRODUCTION

As more and more people tend to seek out news and express
their opinions through social media platforms, rumors spread
more rapidly and widely. Rumors containing intentionally
false information will mislead people into biased or fake in-
formation, break official organizations’ credibility, and even
cause riots [1]. Therefore, effectively detecting rumors from
social media is in critical need.

Previous methods count more on the text content of news
to judge whether it is a rumor or not [2, 3]. Hand-crafted tex-
tual statistical characteristics [4] or textual features learned by
neural networks [5, 6] are used to represent the news. How-
ever, the information contained in plain text is limited for de-
tecting rumors [7]. Researchers attempt to analyze the impact
of image contents of news for detecting rumors [8, 9].

Recently, many works have been explored to detect ru-
mors concerning textual and visual modalities [10, 11, 12].
However, detecting rumors from multimodal data is not a
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trivial task. The challenges of multimodal rumor detection
mainly lie in capturing the intra-modal relationships between
rumors and non-rumors in every single modality and explor-
ing the inter-modal relationship of multimedia data across
multimodal. Unfortunately, existing methods mainly focus
on extracting the inter-modal relationship across multimodal
but pay little attention to the intra-modal relationship. Meth-
ods [13, 14] use pre-trained language and vision models to
extract the unimodal features, which are then concatenated as
the multimodal representation of news. Some methods de-
sign multimodal fusion networks based on attention mecha-
nism, Transformer, GAN, or VAE [15, 16, 17, 18]. However,
these methods fail to extract the intra-model relationships be-
tween rumors and non-rumors in single modalities. Besides,
authors in [19, 20] extract extra information from the real-
world knowledge base to help detect rumors. Method [21]
introduces the social context to assist the multimodal feature
learning of the news. In contrast, our method attempts to
capture both the intra- and inter-modal relationships of multi-
modal news without introducing extra information.

To address the challenges in multimodal rumor detection,
we propose a novel Multimodal Rumor detection method
based on deep Metric learning (MRML), which can not only
discover the intra-modal relationships between rumors and
non-rumors in every modality but also extract the inter-modal
relationship across multimodal. Specifically, we design the
metric-based triplet learning to extract the intra-modal rela-
tionships in both textual and visual modalities by measuring
the distance between sampled rumor or non-rumor triplets.
Then in the designed contrastive pairwise learning, we com-
pare the similarities of sampled news pairs to extract the
inter-modal relationship across multimodal. Finally, a ru-
mor detection module is applied to the learned multimodal
representation of news to detect rumors.

In summary, this work makes the following contributions:
(1) We propose a method MRML based on language and vi-
sion for multimodal rumor detection, which can capture ef-
fective multimodal representations from the textual and vi-
sual modalities for detecting rumors. (2) We design the mul-
timodal learning scheme based on deep metric learning for
rumor detection, efficient at extracting intra-modal relation-
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Fig. 1. The overall architecture of MRML. (a) extracts the modal-specific features of visual modality (green) and textual
modality (orange); (b) captures the intra- and inter-modal relationships from multimodal data; (c) detects the rumors.

ships in every modality and inter-modal relationship across
multiple modalities.

Extensive experiments on two real-world datasets demon-
strate the effectiveness of MRML in distinguishing rumors
compared with other rumor detection methods.

2. METHODOLOGY

Given the news containing text content T and image content
I , the objective of rumor detection is to distinguish whether
the news is a rumor (y = 1) or non-rumor (y = 0), i.e., to find
a function F (T, I) → ŷ ∈ {0, 1}. The overall architecture of
our proposed MRML is illustrated in Fig. 1.

2.1. Unimodal Features Extraction

As different modalities contain unique characteristics, before
learning the multimodal features of news, we apply unimodal
feature extraction networks to capture the modality-specific
unimodal features of text and image content. In recent years,
the development of large-scale pre-trained models, language
model BERT [22] and vision model VGG-19 [23] have been
proven effective in capturing textual and visual semantic fea-
tures [24, 25]. Thus in this work, we use BERT to extract the
unimodal textual feature s. Given the text content T , consist-
ing of l tokens T = {t1, t2, ..., tl} (l represents the number
of words), s is the concatenation of the l token embeddings
calculated by BERT. Moreover, we use VGG-19 to extract the
unimodal visual feature v.

s = CONCAT
{

BERT(ti)li=1

}
,v = VGG-19(I). (1)

2.2. Metric-based Triplet Learning

Typically, the features coming from different modalities re-
flect different data characteristics and have information gaps,

resulting in that unimodal textual and visual features can not
be compared and fused directly. Thus, we project unimodal
features into a common latent vector space before capturing
the multimodal relationships by the textual and visual projec-
tion networks fT and f I . Then we get the latent textual and
visual representations c and r as follows:

c = fT (s), r = f I(v). (2)

Since the appearance of triplet learning, it has shown the
effective ability to learn data representations based on differ-
ent distance relationships [26, 27]. Thus in MRML, we de-
sign a metric-based triplet learning to capture the intra-modal
relationship in both textual and visual modalities.

Given the visual modality as a showcase, we first sample
various triplets from the dataset, for example, (Ia, Ip, In). For
each anchor Ia, the negative sample In has the opposite label
with Ia (label means rumor or non-rumor), while the positive
sample Ip has the same label as the anchor. To accurately
distinguish the rumors and non-rumors, we aim to learn a dis-
tance metric that maps the anchor and positive sample closer
(these two have the same label) and keeps the anchor far away
from the negative sample (these two have the opposite label),
as shown in Fig. 2. We can see that if the closest negative
sample is far from the farthest positive sample, then the other
triplets will also satisfy the distance relationship. Thus we
sample such triplets to train our model.

Specificity, we define the distance metric function with
the learned parameters W I as:

DI(Ii, Ij) = (ri − rj)W
I(ri − rj). (3)

Then we calculate the metric-based triplet learning loss
based on the sampled triplets in image modality as:

LI
mtl =

∑
HI

max
{
0, αmtl −∆T (DI(Ia, Ip)−DI(Ia, In))

}
,

(4)
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where HI = {(Ia, Ip, In)} is the set of sampled triplets, and
αmtl is a margin that keeps away the distance between the neg-
ative and positive samples. Further, we use ∆T above to cap-
ture the complementary information in the textual modality
to assist the learning of the intra-model relationship in the vi-
sual modality. Given the corresponding triplets (Ta, Tp, Tn)
in textual modality, we have:

∆T = Sign(∥ca − cp∥2 − ∥ca − cn∥2), (5)

where Sign(x) indicates the sign of x.
By minimizing the metric-based triplet learning loss in the

visual modality, the representations of rumors (non-rumors)
are closely and separate from non-rumors (rumors), which re-
flects the intra-modal relationship in the visual modality. To
further capture the textual intra-modal relationship, we follow
the above process to sample triplets in textual modality and
get the loss LT

mtl as (4) with the complementary information
∆I from the visual modality. We denote the other parameters
of LT/I

mtl except for WT/I as θmtl. In MRML, we design iter-
ative learning to effectively extract intra-modal relationships
from both modalities. When minimizing LI

mtl, W
T is fixed,

while W I and θmtl are updated. Similarly, when minimizing
LT

mtl, W
I is fixed, WT and θmtl are updated.

2.3. Contrastive Pairwise Learning

Contrastive learning [28] has been proven effective in cap-
turing data features. Thus in this work, we design the con-
trastive pairwise learning to capture the inter-modal relation-
ship across multimodal. Specificity, for the sampled news
pairs (Ta, Ia) and (Tn, In) with opposite labels, that is, if
(Ta, Ia) is a rumor (non-rumor), (Tn, In) is a non-rumor (ru-
mor), we enforce the similarity score of original pair (Ta, Ia)
higher than the unpaired sample (Ta, In). In this work, we
define the contrastive pairwise learning loss as:

Lcpl =
∑
D

max
{
0, αcpl − Sim(Ta, Ia) + Sim(Ta, In)

}
,

(6)
where D = {(Ta, Ia), (Tn, In)} is the set of valid news pairs,
and αcpl is the margin. The Sim(,) function calculates the
similarity score of a given pair:

Sim(Ti, Ij) = σ(W1m(Ti, Ij)), (7)

where σ is the sigmoid function, W1 is the weight matrix, and
m is the multimodal representation of (Ti, Ij) defined as:

m(Ti, Ij) =
∑k

x=1
(WT

x ci)⊙ (W I
xrj). (8)

The ci and rj are latent representations of Ti and Ij as in (2).
The WT

x and W I
x are the learned parameters, and ⊙ is the

element-wise product. The k is used to fuse the interactions
between two modalities from different levels.

2.4. Rumor Detection

Finally, a rumor detection module g consisting of two fully
connected layers with the relu activation function followed by
the softmax function is applied to detect the news authentic-
ity. The input is the multimodal representation m(Ti, Ii) of
news, and the output is the probability of the input news being
a rumor, denoted as ŷ = g(m(Ti, Ii)). We use y to represent
the ground-truth label and then employ cross-entropy to cal-
culate the rumor detection loss:

Lrd =
∑

−[ylog(ŷ) + (1− y)log(1− ŷ)]. (9)

Overall, the objective of our rumor detection method is:

L = λmtlL
T/I
mtl + λcplLcpl + Lrd. (10)

The λmtl and λcpl are weights of metric-based triple learning
loss and contrastive pairwise learning loss, respectively.

3. EXPERIMENTS

3.1. Datasets and Settings

We conduct experiments on two widely used multimodal ru-
mor detection datasets. The Weibo [21] dataset is collected
from China’s social media platform Weibo. The Twitter [29]
dataset comes from the MediaEval Verifying Multimedia Use
benchmark. Following the others [18, 15], we remove the
news with videos and news without texts or images and di-
vide the rest data into training and testing sets with a ratio
of 8:2. In the experiments, there are 4211 rumors and 3642
non-rumors in Weibo with 12941 attached images. In Twitter,
there are 5797 rumors and 5253 non-rumors with 451 images.

The token length l of text content is padded or truanted
to 50, and the word dimension is 768. The dimension of uni-
modal visual feature is 4096. The textual/visual projection
network is a fully connected layer of size 1024 with a relu
activation function. We set the iterative frequency to 2 and
the dimension of multimodal representation to 1024 with the
fused layer k = 2. The learning rate is 0.00001 for Weibo
and 0.0005 for Twitter. The dropout rate is 0.4. We use
Adam optimizer to train our model with a batch size of 128
and 0.0001 weight decay. The optimal hyperparameters of
our model are determined by grid searching. Thus we have
αmtl = αcpl = 0.2, λmtl = 0.3, and λcpl = 0.5. The code of
MRML is available at https://github.com/plw-study/MRML.



Table 1. Results of different rumor detection methods on two datasets. (* means the results are from the baseline paper.)
Weibo Twitter

Method Acc Rumor Non-rumor Acc Rumor Non-rumor
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Bert 0.845 0.858 0.833 0.845 0.833 0.857 0.844 0.642 0.666 0.766 0.711 0.602 0.474 0.526
VGG-19 0.647 0.640 0.700 0.668 0.657 0.591 0.621 0.767 0.829 0.753 0.787 0.704 0.785 0.740
att-RNN 0.772 0.854 0.656 0.742 0.720 0.889 0.795 0.664 0.749 0.615 0.676 0.589 0.728 0.651
EANN 0.782 0.827 0.697 0.756 0.752 0.863 0.804 0.648 0.810 0.498 0.617 0.584 0.759 0.660
MVAE 0.824 0.854 0.769 0.809 0.802 0.875 0.837 0.745 0.801 0.719 0.758 0.689 0.777 0.730
SpotFake 0.869 0.877 0.859 0.868 0.861 0.879 0.870 0.771 0.784 0.744 0.764 0.769 0.807 0.787
SpotFake+ 0.870 0.887 0.849 0.868 0.855 0.892 0.873 0.790 0.793 0.827 0.810 0.786 0.747 0.766
SAFE 0.763 0.833 0.659 0.736 0.717 0.868 0.785 0.766 0.777 0.795 0.786 0.752 0.731 0.742
CAFE* 0.840 0.855 0.830 0.842 0.825 0.851 0.837 0.806 0.807 0.799 0.803 0.805 0.813 0.809
MRML-C 0.834 0.871 0.766 0.814 0.808 0.895 0.849 0.747 0.783 0.784 0.782 0.702 0.696 0.697
MRML-T 0.852 0.872 0.810 0.839 0.838 0.890 0.862 0.780 0.795 0.835 0.814 0.758 0.704 0.729
MRML 0.897 0.898 0.887 0.892 0.896 0.905 0.901 0.803 0.821 0.844 0.832 0.777 0.747 0.762

3.2. Baselines

We compare MRML against other rumor detection methods
from two categories: unimodal and multimodal.

Unimodal methods rely on unimodal information to de-
tect rumors. We use Bert/VGG-19 to get textual/visual uni-
modal representations. Then the learned unimodal represen-
tations are fed into a fully connected layer with a softmax
function to perform the rumor detection. Multimodal meth-
ods use both text and image contents to distinguish rumors.
Att-RNN [21] uses attention to fuse the image and text fea-
tures. MVAE [18] uses two VAE models to reconstruct the
unimodal features. EANN [17] uses an event discriminator
network to extract event-invariant features. SpotFake [13] and
SpotFake+ [14] concatenate the unimodal features extracted
by pre-trained language and vision models. SAFE [10] de-
signs a similarity-aware method to learn multimodal features.
CAFE [11] designs a cross-modal ambiguity learning module
for estimating the ambiguity between different modalities.

3.3. Results and Analysis

Table 1 displays the rumor detection results on the two
datasets, including the overall Accuracy and Precision, Re-
call, and F1 scores for rumor and non-rumor, respectively.

On Weibo, our proposed method MRML outperforms all
the other baselines on all the metrics, which means MRML
successfully extracts the intra- and inter-modal relationships
and learns better multimodal representations for detecting
rumors. Also, the multimodal methods SpotFake and Spot-
Fake+ achieve better results than the unimodal methods,
which means extracting multimodal features from both tex-
tual and visual modalities is helpful in detecting rumors. On
Twitter, MRML gets a comparable Accuracy with CAFE and
achieves the highest F1 score in detecting rumors among all
the methods. The multimodal methods receive higher accu-
racy scores than the unimodal methods, which means learning

multimodal features can benefit rumor detection.

3.4. Ablation Study

To validate the effectiveness of different components of our
method MRML, we conduct the ablation study and report the
results in the bottom part of Table 1. The sub-model MRML-
C has the same network structure as MRML but training with-
out the contrastive pairwise learning loss. MRML-T is the
sub-model without metric-based triplet learning loss.

Comparing the performance of MRML-C and MRML,
we can observe that the model benefits a lot from extracting
inter-modal relationships through contrastive pairwise learn-
ing. Without metric-based triplet learning, MRML-T receives
a performance decline compared to MRML, which shows the
effectiveness of capturing intra-modal relationships between
rumors and non-rumors in each modality.

4. CONCLUSIONS

In this paper, we propose a multimodal rumor detection
method based on deep metric learning (MRML) to effectively
distinguish rumors. Specifically, we design metric-based
triplet learning and contrastive pairwise learning to discover
and capture the intra-modal relationships in different modali-
ties and the inter-modal relationships across multiple modal-
ities. Extensive experiments conducted on two widely used
datasets demonstrate the superior performance of our pro-
posed method compared to other rumor detection methods.
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