
LogRep: Log-based Anomaly Detection by
Representing both Semantic and Numeric

Information in Raw Messages
Xiaoda Xie∗†, Songlei Jian∗†, Chenlin Huang§†, Fengyuan Yu†, Yujia Deng‡

†The College of Computer, National University of Defense Technology, Changsha, China
‡China United Network Communications Co., Ltd. Hunan Branch, Changsha, China

xiexiaoda@hotmail.com, {jiansonglei, clhuang, yufengyuan}@nudt.edu.cn, dengyj7@chinaunicom.cn

Abstract—Log-based anomaly detection plays an essential role
in various system reliability-related fields including software reli-
ability, network reliability, and so on. System log data is a kind of
semi-structured heterogeneous data that contains both semantic
parts and numeric variables which both reflect the abnormal
behavior of the system. However, existing log-based anomaly
detection methods fail to capture the numeric information in raw
data which makes them degrade a lot when only limited labeled
data is available. To comprehensively capture the semantic and
numeric information to enhance anomaly detection, we propose
LogRep, a novel representation-based log anomaly detection
method that captures both semantic and numeric information in
the learned representations. The newly proposed position-aware
numeric representation learning module and the attention-based
representation fusion module in LogRep solve the heterogeneity
problem well in log data. Due to the high quality of learned
log representation, LogRep can achieve a comparable anomaly
detection performance with SOTA methods while the training
data used in LogRep is two orders of magnitude less than that
used in SOTA methods. When reducing the training data scale,
the performance of SOTA methods drops a lot, while LogRep
keeps a stable good performance on two public HDFS dataset,
BGL dataset, and one self-collected dataset. Specifically, LogRep
achieves the 10.6% and 5.8% improvements over the second-best
method in terms of F1 score on the BGL and HDFS datasets when
only 1% training data are available respectively.

Index Terms—Log-based anomaly detection, Log representa-
tion learning, Limited training data, Log heterogeneity, Log data
analysis

I. INTRODUCTION

Log-based anomaly detection has been widely used in vari-
ous fields as intrusion detection, malicious analysis, and traffic
control for preventing software failures and improving system
reliability [43, 4, 10, 30, 27]. Over the past decades, many
methods have been designed to detect anomalies from log data,
including the rule-based detection methods [6, 36, 38], deep
learning-based detection methods [8, 47, 22, 11, 50]. Anomaly
detection using deep learning model can provide high flexibil-
ity and dynamic approaches in different application situations
[15, 11, 12, 44, 45], and log data is a suitable data source for
extracting the features of the system.

As shown in Figure 1, a raw log message is a kind of
semi-structured text, consisting of the semantic part and the

∗
Equal contribution.§
Corresponding author.

Template-based

methods

Embedding(INFO

dfs.DataNode$DataXceiver:

Receiving block src: dest: /)

1INFO dfs.DataNode$DataXceiver: Receiving block

src: /10.251.203.246:34121 dest: /

10.251.203.246:50010

INFO dfs.DataNode$PacketResponder: Received

block of size 67108864 from /10.250.7.244

1

2

3

Template 1: Receiving block

src:* dest: /*

Template 2: Received block of

size * from /*

Template 2: Received block of

size * from /*

1

2

3

Embedding(INFO

dfs.DataNode$PacketResponder:

Received block of size from)

Embedding(INFO

dfs.DataNode$PacketResponder:

Received block of size from)

Rep({INFO dfs.DataNode$DataXceiver:

Receiving block src:

dest},[10.251.203.246:34121,10.251.203.

246:50010])

Rep(INFO

dfs.DataNode$PacketResponder:

Received block of size from,[67108864,

10.251.106.10])

Rep(INFO dfs.DataNode$PacketResponder:

Received block of size from,[67108864,

10.250.7.244])

Semantic-embedding

methods

Our repsenetation-based

method

With Parsing
With NLP

techniques

With proposed

representation learning

Raw Logs with ground-truth labels

• Semantic part

• Numeric partAbnormal

Normal

Abnormal
INFO dfs.DataNode$PacketResponder: Received

block of size 67108864 from /10.251.106.10

Fig. 1. The raw log demonstrations from HDFS dataset and the comparison
between different log processing methods.

numeric part, and both parts reflect the abnormal properties
of logs. The semantic information of the log is the pre-defined
formatted information in the log output, describing the event
and presented like natural language. The numeric information
consists of several variables, such as IP address, file size,
packet sequence number, and so on. In Figure 1, the log
term 2 and term 3 have the same semantic part while the
numeric part is different, which leads to different anomaly
results. However, existing log anomaly detection methods
always overlook the numeric parts due to the difficulties of
representing heterogeneous semi-structured data. As shown
in Figure 1, the utilization of the log data can be divided
into two major types, including the template-based methods
[24, 16, 5, 8] and semantic-embedding based methods [22].
The template-based methods adopt specific parsing tools like
Drain [14], Spell [7] and AEL [19] to retrieve the pattern
contained inside the logs, and generate a set of templates.
For each log item, a particular template is used to represent
it. During this conversion process, different log messages are
represented by the same semantic template, with all the nu-
meric variable information dropped. The final data is a numeric

sequence consisting of template ID as the representation of the
logs. In order to avoid the shortcomings of the template-based
methods, the semantic embedding-based methods are designed
to use NLP (i.e., natural language processing) tools to process
all the semantic information in log messages by dropping
the numeric parts. Generally, the existing approaches are not
satisfying for the utilization of comprehensive information in
log messages. Specifically, we summarize the following three
main limitations or challenges of the existing log anomaly
detection methods.

• Limitation 1: Highly dependent on log parser. The
template-based methods adopt log parsing tools to sep-
arate semantic templates and numeric parts, but the
effectiveness is highly dependent on the log parsing tools,
and the current methods are hard to be extended to
new datasets. When adopted on data with very different
structures, the misunderstanding of the template parsing
methods may ignore some valuable information, such as
exception type, activity token, and message ID, which
leads to poor anomaly detection results.

• Limitation 2: Failing to utilize the numeric informa-
tion. Almost all log anomaly detection methods exclude
numeric variables from original log messages in order
to obtain templates or embedding conveniently. But as
shown in Figure 1, there is abundant information in
the numeric parts which are also important for anomaly
detection. However, capturing the numeric information
in the raw logs is a challenging task. For template-
based methods, the numeric property is contradictory to
the discrete countable templates. And for the semantic-
embedding methods, the numeric parts, such as IP address
and block size, are not natural languages in the usual
sense so it is hard to unify the numeric part with semantic
embedding.

• Limitation 3: Requiring large-scale training data. Most
anomaly detection methods including both template-
based and embedding-based, require a large scale of
training data to improve detection precision and recall
rate due to their insufficient feature learning abilities. But
in real situations, it is not always possible to provide suf-
ficient abnormal samples to support the anomaly feature
learning, as anomaly behavior is relatively rare in most
cases. Therefore, a better model is required, to reduce the
training data scale, and mitigate the sample imbalance
problem.

Considering the above limitations, it is vitally important for us
to find a better representation method for log data to capture
comprehensive information in both semantic and numeric parts
without depending on any parser. Then these high-quality
representations could be used as training data for the down-
stream model and therefore improve the model performance
in accuracy and recall rate while reducing the requirements
for data scale.

To address the heterogeneity in semi-structured log data, we
propose a novel representation-based log anomaly detection

method, i.e., LogRep, to represent both semantic and numeric
information in the log representation so that the anomaly
detection accuracy could be largely improved with quite
limited training data. Specifically, we propose the BERT-based
semantic representation learning module to learn the semantic
information thoroughly and the position-aware numeric repre-
sentation learning module to accurately capture the numeric
information. Moreover, an attention-based representation fu-
sion module is proposed to unify the two parts to benefit the
detection process of the transformer-based anomaly detection
module.

In summary, the paper provides the following contributions:
• We proposed a novel representation-based log anomaly

detection method LogRep, which comprehensively uti-
lizes both semantic and numeric information in raw
logs, enabling high anomaly detection accuracy and low
demand for training data.

• We proposed a position-aware numeric representation
learning module and an attention-based representation
fusion module to effectively unify the semantic and
numeric information, solving the heterogeneity problem
in semi-structured log data well.

• We evaluated LogRep on two public datasets and one
self-collected dataset with different scales of training
data. The results confirm the effectiveness of LogRep for
representing log messages and detecting anomalies. The
thorough ablation study also shows the contributions of
each module.

II. RELATED WORKS

Various solutions have been released to detect anomalies
based on logs [12, 15, 13, 34, 48, 21, 52]. The anomaly
detection problem can be divided into two stages. The first
stage is to generate appropriate feature data for the raw
logs, and the second stage is to utilize the feature provided
to detect anomalies from it. The feature generation stage
largely involves template parsing and semantic embedding in
previous research. The raw log messages are semi-structured
texts containing both semantic information and numeric vari-
ables. The template parsing process generates an enumerated
template list, containing the log messages formats appearing
in the raw logs found by parsing tools, and then the log
messages can be converted to the count vectors according
to the matched template id. The methods for log parsing
have been widely studied and adopted in anomaly detection
[37, 9, 49, 53, 32, 51]. Deeplog and PLELog used Spell
[8, 47, 7] to do the template parsing, and LogRobust used
Drain [50, 14]. After the raw logs are transformed into an
event count vector, there are various models used to detect
anomalies from the vectorized data. Many traditional methods
used in classification problems are utilized to solve log-
based anomaly detection, such as Support Vector Machine
(SVM) [24], Invariant Mining (IM) [26], Principal Component
Analysis (PCA) [46, 16]. SVM is a widely adopted statistic
method and has been tested as an anomaly detection model
on the dataset of IBM BlueGene/L Event Logs to predict

Raw Logs

Numeric part

10.251.111.37:50010

10.251.111.37:35327

Receiving block

blk_* src: * / dest :*/

10.251.111.37:50010

10.251.111.37:35327

67108864

blockMap updated: * is

added to blk_* size *

Log Representation Learning

1. Receiving block src:

10.251.111.37:35327 dest:

10.251.111.37:50010

2. blockMap updated:

10.251.31.85:50010 is

added to blk_ size 67108864

……

Semantic part
Bert-based semantic

representation

learning

Position-aware

numeric

representation

learning

Attention-based

Representation

Fusion

Transformer

Pooling

&

Dropout

Linear

Layer Anomaly

detection

loss

Anomaly Detection

rs

rn

rf

Fig. 2. The overview of LogRep.

failures [24]. PCA is mostly used for dimensional reduction of
vectors by calculating the k components that catch the most
variance among the high-dimension data. It is first utilized in
log-based anomaly detection by finding the patterns between
the dimensions of event count vectors introduced by Xu et al.
[46, 16]. The IM method mined invariants from the counter
vectors, utilizing the mining result to reveal the inherent linear
characteristics of program flows and detect anomalies inside.

In order to generate the semantic embedding for logs,
there are many methods adopting deep neural network models
[11, 18, 42, 39] to process the template parsed from the
raw logs. Those template embeddings can be utilized to
improve the anomaly detection ability compared to represen-
tation methods using template count only. LogRobust [50]
and PLELog [47] use pre-trained FastText [20] model to
generate template embedding. They aim at learning features
reflecting the anomaly from the representation combined with
template count and their semantic embedding. After processing
by the upstream network, the features are put into the last
layer to output the result of classification. LogRobust is a
supervised method that requires a suitable amount of labeled
datasets. PLELog is a semi-supervised method. It adopts
the HDBSCAN [28] algorithm to cluster all log sequences.
Based on clustering results, it measures the probability that
an unlabeled log sequence belongs to each label. The original
deterministic labels are replaced by these probabilistic labels
estimated in order to reduce the influence of noise incurred by
unsuitable labeling [47]. Log2Vec [29] is a framework with
specially designed mechanism to handle OOV (i.e., Out-of-
vocabulary) words for covert logs to distributed information.
It can also be applied to generate the representation for log
messages in an anomaly detection task.

Except for the methods using embedding generated from
templates, the semantic embedding-based method creating
embedding for each log regardless of its template or format is
also studied in work [22]. They remove all the numeric parts
from the log messages and then apply the language model
to vectorize the texts remaining to create a representation
with full embedding for each log. In their approach, Neural-
log utilized the pre-trained transformer-based language model
BERT [40] to generate the embedding. For anomaly detection,

Neurallog used a 1-layer encoder of transformer to classify the
log sequence into anomaly or normal ones. However, in the
state-of-art approaches, the utilization way of the non-semantic
numbers in the logs is still unsolved.

III. THE PROPOSED METHOD

A. Overview of LogRep

In this paper, we propose a novel method LogRep to
overcome the limitations mentioned above and produce ef-
fective representations for anomaly detection. As shown in
Figure 2, first we extract the semantic part and numeric part
from the raw log dataset and establish the representation
data for downstream model. Then the two parts are input to
two modules, i.e., Bert-based semantic representation learning
module and position-aware numeric representation learning
module. The produced semantic representation rs and numeric
representation rn are unified into final log representation rf for
each log term with the attention-based representation fusion
module. Finally, the representations are used in transformer-
based anomaly detection module. The whole pipeline is trained
with the anomaly detection loss and each module is updated
by the back-propagated gradient of the loss.

B. Log Representation Learning

In order to obtain the feature as input for the anomaly
detection model, the raw logs must first be preprocessed
and converted to vector data. Each log item is composed of
the semantic part and the numeric part, namely the textual
terms and the numeric terms. For example, a log ”NameSys-
tem.addStoredBlock: blockMap updated: 10.250.14.38:50010
is added to blk size 67108864” contains several numeric terms,
they are the IP address, block id, and data size. The task of
representation learning is to properly process those structures
and generate the feature data that can effectively present the
characteristic information.

1) Semantic Representation Learning: The semantic part is
the major textual structure of the log, and can be treated as a
kind of natural language. In the example above, the semantic
part is ”NameSystem.addStoredBlock: blockMap updated: * is
added to * size *”. In the template-based method, the numbers
are considered redundant variables and will not be considered

when constructing the feature data, only the semantic part is
recognized and used to match the format of certain template.
Then each log is converted into a number indexing a certain
template. Every different template can be regarded as a type
of event, so the result of the template-based representation
is the sequence of numbers that indicate the events identified
from the log messages. In order to provide a more informative
representation, the word embedding generated for each log
template can be brought in to gather semantic information.
In previous research, different methods have been adopted to
generate template embedding. In LogRobust [50] and PLELog
[47], pre-trained FastText model [20] is used to encode tem-
plates into sentence vectors.

But the performance of template-based methods are highly
dependent on the template parsing process and its adaptiveness
to certain log format, an effective solution is adopting the
language model to conduct vector generation for the semantic
part of all logs. In this type of method, all the numbers in
the log message are also removed and only the main textual
blocks are left for further processing. In our method, the two
parts of the logs are separated, but those numbers will not be
simply discarded. We leave them for further process and use a
language model to generate the semantic vectors for the textual
part. We choose Bidirectional Encoder Representations from
Transformer, i.e., BERT, to process the texts, and generate
word embedding for each of the logs.

BERT is an open-source machine learning framework for
NLP, designed to generate embedding for sentences according
to their context. The model was based on transformer, using
the attention mechanism to process the relation between the
log texts, and the output vector of the model is a numeric
vector. The vector generated from log messages with close
meaning will have a closer distance. The pre-trained BERT
model has been used in generating log representation in
previous research [11, 22]. There are several versions of the
pre-trained model release, including BERT-Large, BERT-Base,
and their variations. In our case, we choose the uncased BERT-
Base model, which has 24 layers, 1024 hidden states, and 340
million parameters [40, 1].

After the numeric terms are separated from the log mes-
sages, only the semantic part is fed into the BERT uncased
model to generate the representation rs, which is generated by
the BERT model:

rs = BERT(text). (1)

2) Numeric Representation learning: The embedding rs
represents the major structure of the log messages. The
variables in log messages include the non-numeric ones and
numeric ones. The non-numeric ones like the user names, can
be dealt with using NLP techniques and integrated into rs,
but the numeric variables are in different forms and require a
special representation method. The numeric variables consist
of different types of numbers from IP address to packet size,
containing important information but hard to utilize. Those
numbers like IP address are difficult to process in a traditional
way because of their singular structure and the complexity in

Raw Log
Numeric Info.Numeric Info.

10.251.74.134:39

10.251.74.134:50

Numeric Info.

10.251.74.134:39

10.251.74.134:50

Transpose

Normalize

Softmax

Position-aware numeric

representation rn

dfs.DataNode$DataXceiver

: Receiving block blk_

src: /10.251.74.134:39

dest: /10.251.74.134:50

Position SequenceP

55 55 555 5 5 55 55 555 5 5 55 55 555 5 5 55 55 555 5 55 5 5 5 5 5 5 5 5 5 5 5

77 77 777 7 7 77 77 777 7 7 77 77 777 7 7 77 77 777 7 77 7 7 7 7 7 7 7 7 7 7 7

p1

p2

Position SequenceP

5 5 5 5 5 5 5 5 5 5 5 5

7 7 7 7 7 7 7 7 7 7 7 7

p1

p2

Number Sequence N

11 00 221 0 2 55 11 775 1 7 44 11 334 1 3 44 33 994 3 91 0 2 5 1 7 4 1 3 4 3 9

11 00 221 0 2 55 11 775 1 7 44 11 334 1 3 44 55 004 5 01 0 2 5 1 7 4 1 3 4 5 0

n1

n2

Number Sequence N

1 0 2 5 1 7 4 1 3 4 3 9

1 0 2 5 1 7 4 1 3 4 5 0

n1

n2

Fig. 3. Position-aware numeric representation learning process.

generating unified feature data to present such numbers. In
order to properly make use of those numbers, we design a
method based on attention mechanism to generate a position-
aware numeric representation to enable the anomaly detection
model to learn that unstructured information.

After we separate the numbers from the logs, first the
numbers in each log are presented as a number vector
N = {n1,n2, ...,nl}, where ni is the numeric terms and
l is the count of the numbers. Then a position pattern
P = {p1,p2, ...,pl} is generated corresponding to the number
vector N , each value pi indexing the position of each number
pattern in the message respectively. The reason to especially
generate such a position vector is due to the characteristic
of those numbers. The numeric items in the log and their
positions are relevant to each other and this connection is
meaningful for anomaly detection. For example, the IP address
in a log message may stand for the identity of a data packet
sender or receiver respectively when appearing in different po-
sitions, and this difference could be representing different sys-
tem statuses and events, therefore used to distinguish anomaly
events. In order to extract such information represented by
the numbers and their position in the sentences, we use the
attention mechanism to quantify their relevance and generate
vector data for training. Attention mechanism has been widely
used in many deep learning applications, and proven to be
useful in measuring the relationship between variables. We
use an attention layer to process the number vector n and
the position pattern vector p, instead of using raw numbers in
representation, to enable the representation data to contain the
complete information of the numbers with their position taken
into consideration.

In this attention layer, we calculate the relation between the
number vector n and the position pattern p using the attention
mechanism as follows:

αn = softmax(
pnT

√
dn

) (2)

As the relation between the numbers and their position in
the log message is important for representation, we use an
attention layer to calculate the relation weight αn. Then the
value of αn is used to get a relation weighted vector rn:

rn = αnn. (3)

As shown in Figure 3, after the attention calculation, both the
initial numbers and their position information are brought into
the final relation weighted vector r. This vector contains the
full information of the numeric part in each log.

3) Representation Fusion: With the embedding rs repre-
senting the information of the semantic part of the logs, and
the vector rn representing the numeric part, a comprehensive
representation of the full log can be generated thereby. We
design a fusion stage with an attention layer to combine
the information retrieved from the numbers and the semantic
embedding to learn the rm, which is calculated as follows:

αs = softmax(
rnr

T
s√

drs
) (4)

rm = αsrs (5)

After a representation with a numeric part enhanced is
generated, the word embedding rs which contains the major
semantic information of the logs is then fed into a positional
encoding layer. In this stage, the positional information is
added to the semantic vectors. We use an embedding gen-
eration function E utilizing sin and cos to do a positional
encoding for the word embedding rs, this step is to enable the
model to learn the position information of the log sequences
[41] as follows:

re = E(rs) + rs. (6)

Then in the last step, we combine the positional embedding
re which contains the semantic and positional information of
the log messages, and the weighted vector rm:

rf = rm + re. (7)

The final representation rf does not only contain the infor-
mation in the semantic part of the logs but also brings in the
numeric part, thus providing a more complete representation
of the logs. This representation provides all the necessary
information including the relationship between numbers and
their positions, making the downstream model easier to learn
the feature of the logs.

C. Anomaly Detection

The anomaly detection step is to use the feature data to
distinguish anomaly items from ordinary ones. It is largely
a two-category classification problem and there are various
solutions. By utilizing the first k logs as a training dataset, a

classification model can learn the anomaly pattern possessed
by the log messages, thereby distinguishing the anomaly data
from the normal ones. As the feature vectors are extracted from
the log messages, an effective approach to process them and
accomplish the classification is using the transformer model
[41]. The transformer model is organized as stacked encoder
layers and decoder layers, with a multi-head self-attention
mechanism adopted to calculate similarity connections be-
tween data. Then we use the average pooling and dropout layer
to process the output of the transformer model, the output is a
vector c for each representation which is calculated as follows:

c = F (rf) (8)
s = softmax(W · c). (9)

Then the fully connected layer maps c into a 2-tuple
s = (s0, s1), where s0,s1 are the scores for the two categories
respectively, and network parameters W can be learned in
training. The classification result is determined according to
the two scores for each category. In training the model, we
use the cross-entropy loss to evaluate the performance of the
classification result. For classification scores tuple (s0, s1)
processed by softmax function and ground truth y, we have a
cross-entropy:

loss = − 1

L

L∑
i=1

[yilog(s0i) + (1− yi)log(s1i)] (10)

where L is the number of samples in each training batch,
and yi is the ground truth of the i-th sample, equal to 1 for
anomaly samples, and 0 for the others. Using cross entropy as
the loss function, we can measure the distance from the model
prediction to the real value.

Another limitation of the anomaly detection application is
that the model training process requires a large amount of
data to learn the anomaly features, but there are considerable
difficulties in providing enough data for training. And the
imbalance between the number of positive items and negative
samples raises a challenge for the model to grab the exact
information from the data, since most of the data items are
negative ones, namely without anomaly, it will be difficult
to learn the precise anomaly behavior patterns. In order to
mitigate the sample imbalance issue, we resample the positive
log items, with the fraction of the ratio of the positive number
to the negative number.

IV. EXPERIMENTS AND ANALYSIS

In this section, we evaluate our method LogRep by answer-
ing the following three questions.

RQ1: How does LogRep perform in anomaly detection
compared with the state-of-art methods?

RQ2: How does the LogRep perform when the trained data
scale is highly limited?

RQ3: To what degree do the newly introduced modules in
LogRep contribute to log anomaly detection?

TABLE I
DATASETS USED IN OUR EXPERIMENT.

Dataset Size Normal Logs Anomalies
BGL 743 M 4,747,963 348,460

HDFS 1.5 G 11,175,629 16,838
Self-collected HDFS 123 M 332,326 6433

A. Experimental Setup

1) Datasets: To evaluate the anomaly detection ability of
the model, we conduct the experiment on two public datasets
and one self-collected dataset as shown in Table I. The
BlueGene/L (BGL) dataset [33] and the Hadoop Distributed
File System (HDFS) dataset [17, 3] have been widely used
in diverse researches of log-based anomaly detection before
[47, 22, 24, 31]. The BGL dataset contains 4,399,502 normal
logs and 348,460 anomaly logs. The HDFS dataset is collected
from a private cloud environment and widely used as log data
in anomaly detection. 16,838 logs in the dataset are anomalies,
the other 11,175,629 are normal logs. We follow the previous
processing method to sample HDFS dataset according to the
data nodes ID, and apply a sliding window with the size and
step of 20 to the BGL dataset. As the two datasets are both
imbalanced between positive and negative item numbers, our
resample strategy is adopted to duplicate the positive logs to
balance the samples before the training.

Although the two datasets are widely used, the anomaly
types are limited [46] and the data structure of the HDFS
dataset is not suitable for testing model performance when
the training data scale is limited. The anomaly labels in the
HDFS dataset are related to certain entities, namely the data
block with a certain id. Therefore log sequences are generated
according to the block it belongs to, and the log sequences
generated this way have different structures and can not be
restricted in a unified way as the raw log messages are limited
in a certain scale.

In addition to the public datasets, we collect the log mes-
sages on an HDFS server under continuous emulated malicious
attacks, which cause the usual HDFS server errors including
data access timeout, data block io failure, and datanode anoma-
lies. In the new dataset we built, anomaly logs are generated
along with the usual work logs, then we manually label the
anomaly logs and the normal ones. We test the methods on
our newly collected dataset including LogRep and several
baselines, to compare the performance of those models on
the dataset with artificially created anomaly logs and examine
their flexibility on the particular dataset. The dataset we collect
contains 332,326 normal logs and 6,433 anomaly logs. The
logs are gathered during a period of about 7,000 hours.
Different from the public HDFS dataset that contains lots of
anomaly logs related to client exception and file operation
failure [46], the anomaly logs in our dataset are generated
from simulated malicious behavior, including different types
of attacks. We test LogRep and other methods on this dataset
to examine the ability of the models to accurately identify
malicious actions from log message analysis.

2) Comparison Methods: We compare our method with
the state-of-art approaches, including the anomaly detection
models based on templates and the semantic information. For
the methods based on deep learning and semantic embedding
of templates, we compare LogRep with the following methods.

• LogRobust [50]: LogRobust is a supervised anomaly
detection model. It incorporates a pre-trained FastText
model for the generation of template embedding. The
feature data generated is input into an attention-based Bi-
LSTM model.

• Log2Vec [29]: Log2Vec is a method designed to extract
the semantic information of logs, and can be used to
generate a representation from raw logs, utilizing the
down-stream model to accomplish the anomaly detection
tasks.

• PLElog [47]: PLElog is a semi-supervised anomaly de-
tection model which also used a pre-trained FastText
model to generate the template embedding. It utilizes the
HDBSCAN method to cluster log sequences into groups
and uses a GRU-based classifier to detect anomalous log
sequences.

• Neurallog [22]: Neurallog is an anomaly detection
method without a template parsing process. In the Neu-
rallog model, all numeric variables in the raw logs are
discarded and the rest of the texts are processed by a
pre-trained BERT language model.

We tested the above methods on the two public datasets
HDFS and BGL, and only some of them on the self-collected
dataset. We didn’t conduct PLElog and Log2Vec on the self-
collected dataset because these two methods require a special
data format to be processed.

B. Data Preprocessing

An important factor of the model performance evaluation
is the training dataset scale. It is obvious that if we train a
model with a large scale of data, and only test it on a small
fraction of data from the dataset, a high performance is not
difficult to achieve. But a practical problem is that with the
reduction of the training data length, it will be increasingly
more difficult for the model to obtain the important features
from the data, therefore weakening the ability of the model to
detect anomalies. Using large training set to improve model
performance would inevitably increase the training overhead,
and can not be widely adopted in an application for the exces-
sive requirements on the training data. In order to measure both
the detection performance and the feasibility in practice of the
methods, we conduct the experiment on datasets with limited
training data scale. For the HDFS dataset, there are over 10
million raw log messages. As the usual way of pre-processing
transform those raw logs into log sequences according to their
related block id, the intermediate data still contains hundreds
of thousands of data items. For BGL dataset, the number of
the data items generated through sliding windows is also in
that order of magnitude. But using a such scale of training
data for anomaly detection is not always feasible. We want to
evaluate the performance of the models in a practical situation.

The existing methods for log-based anomaly detection adopt
large-scale data and only a small fraction of the dataset is left
for testing. The training data fraction is usually 70% or 80%
[47, 22, 8, 23], so the training data will include hundreds
of thousand data items. There will be a long time and high
hardware requirement training process, and the training data is
far more than the test data, which weakens the credibility of the
evaluation. Therefore we test the models with less training data
to examine their practical anomaly detection ability. First, we
conduct the experiment with 10% data for training. For HDFS
dataset, we use training data from only 50, 000 data nodes,
rather than several hundreds of thousands, and for BGL dataset
the training data is sampled from 20, 000 sliding windows.
Then we further reduce the training data scale to 1%, to
evaluate the model performance under extreme circumstances.

C. Evaluation Metrics

We evaluate the performance of these models via the widely
used metrics: Precision, Recall, and F1-score. Precision is

TP
TP+FP and Recall is TP

TP+FN . And F1-score is the measure
of overall classification accuracy calculated by 2·PrecisionRecall

Precision+Recall ,
where TP, FP, TN, FN refer to the number of true positives,
false positives, true negatives, and false negatives respectively.
Positive here means predicted by the model as anomaly and
negative ones are predicted as normal. True or false are
determined according to the labels in the datasets, which we
consider as ground truths.

D. Implementation Detail

In the representation stage, we used the pre-trained language
models including BERT and FastText (for baseline testing). In
the anomaly detection stage, we used transformer model as the
classifier. For the model parameter setting, we set the multi-
head attention mechanism with its head number set to 12. The
encoder layers are set to 1 layer, and the decoder layers are
set to 0, and the size of the feed-forward network is 2048.
The transformer model is trained using optimizer Adam [25],
training 80 epochs with an initial learning rate of 2e− 4.

For the baselines compared in experiments, we used their
default parameter settings except for the training data length.
We used the open-source implementation of LogRobust [50,
2]. For the pre-trained models including FastText [20] and
BERT [1, 40] are all fetched from public releases.

Our method is implemented with Python 3.6 and the Py-
Torch deep learning library [35]. All experiments are con-
ducted on the Ubuntu 18.04.1 server with hardware including
CPU Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz and
NVIDIA GeForce RTX 2080 Ti ×8.

E. RQ1: How does LogRep perform in anomaly detection
compared with the state-of-art methods?

In order to compare LogRep with other methods, we first
conduct the experiment with the training data of 10% of the
dataset as a training set following the previous research. For
each model tested in this way, we first generate the data for

TABLE II
PERFORMANCE WITH A TRAINING SET OF 10% DATA. THE BEST RESULTS

ARE IN BOLD.

Dataset
Method BGL HDFS

P R F1 P R F1
PLELog 0.572 0.855 0.686 0.782 0.952 0.859

LogRobust NaN NaN NaN∗ 0.976 0.986 0.981
LogRobust ov 0.682 0.536 0.601 0.985 0.987 0.986

Log2Vec 0.234 0.526 0.324 0.806 0.982 0.885
NeuralLog 0.624 0.658 0.640 0.718 0.979 0.829

LogRep 0.765 0.875 0.816 0.881 0.998 0.936
∗NaN denotes that the model outputs are all negative.

training from the raw log messages and then set the same
training data length for each model.

As shown in Table II, LogRep achieves the highest preci-
sion, recall and F1-score among all the methods compared,
with the improvement ratio of 136%, 39%, and 91% respec-
tively on BGL dataset. In some of the baselines compared,
their initial implementation are configured with higher training
data ratio, usually requiring much larger training data scale.
Although the training ratio of 10%, with several hundreds of
thousand logs as training data is enough for our approach,
some representation methods cannot extract enough infor-
mation from the training data and shows a lower accuracy.
LogRobust cannot adapt to the imbalanced training data when
10% of the BGL dataset is used for training. Therefore we
adjusted the data sampling of the open-source LogRobust
implementation[2] to add oversample mechanism, marked as
LogRobust ov. LogRobust ov achieves the best F1-score on
the HDFS dataset due to that the HDFS logs are combined as
block-related log groups which is suitable for LSTM model
in LogRobust to learn features from template sequences.
But on the BGL dataset, the log sequences are organized
as time series windows, it raises a challenge to the LSTM
model to accurately obtain the feature information especially
when the training data scale is limited and anomaly samples
are insufficient. The lack of anomaly information causes the
vanilla LogRobust model to predict all test logs as normal,
so the result only contains TN and FN items. With the help
of oversampling, LogRobust ov can perform better on BGL
dataset, but LogRep still outperforms it.

In our experiment, the BGL dataset with non-overlapped
fixing windows, so the feature data are generated without
the usage of replicated log messages, and it is more difficult
for the anomaly detection models to learn from training data
in isolated time windows. Many methods have an obvious
performance drop on the BGL dataset. But LogRep can still
learn from the limited BGL training data and shows a high
performance among other methods.

F. RQ2: How does the LogRep perform when trained data
scale is highly limited?

In application situations, there are not always fully prepared
large datasets for training. In the experiment above, we con-
duct the test with 1% data as training data. In BGL dataset, the

TABLE III
PERFORMANCE WITH TRAINING SET OF 1% DATA. THE BEST RESULTS

ARE IN BOLD.

Dataset
Method BGL HDFS

P R F1 P R F1
PLELog 0.591 0.865 0.702 1 0.24 0.39

LogRobust NaN NaN NaN NaN NaN NaN
LogRobust ov NaN NaN NaN 0.871 0.916 0.892

Log2Vec 0.387 0.745 0.51 1 0.36 0.538
NeuralLog 0.71 0.782 0.744 0.941 0.835 0.885

LogRep 0.994 0.703 0.823 0.947 0.926 0.936

training data include 5,000 data items, and in HDFS dataset
there are 6,000 items.

As shown in Table III, LogRep maintains the best perfor-
mance on both datasets. On BGL dataset, LogRep achieves an
improvement of 11% on F1-score. On HDFS dataset, LogRep
shows an improvement of 6% on F1-score compared to other
methods. Most of the models cannot learn the information with
such inadequate training samples, leading to low accuracy. But
with the advanced representation approach, LogRep remains
a remarkable precision and recall even given only 1% data to
learn. The performance decline is highlighted in the results on
the BGL dataset, as most of the methods will downgrade to
extremely low performance, our approach remains a high F1-
score, which means most of the anomaly can be successfully
detected even without sufficient data.

Compared to the results in Table II, more methods shows an
extremely low performance in Table III. Although the methods
like PLELog and LogRobust achieve good performance when
trained with adequate data, which means they can successfully
learn the features of the anomaly logs from the representation,
they perform worse when the data is insufficient.

According to Table IV, LogRep achieves the best perfor-
mance compared with the methods without using numeric
information. Although the logs generated from the simulated
malicious attacks contain less valuable numeric information
than the public datasets, LogRep still retrieves some useful
features from the raw logs and helps the anomaly detection
model improve performance. But the anomaly logs there have
very different structures compared to usual HDFS logs, the
template-based method can not represent the real feature of
the dataset properly and performs worse than the results on
the public datasets.

As shown in Figure 4, LogRep helps the anomaly detec-
tion model maintain a stable performance compared to other
methods, especially when the training data scale is highly
limited. In a practical situation, using a training set generated
from hundreds of thousands of logs is not always possible.
Besides the high-cost process of collecting and data labeling,
relying on a large scale of training data would also increase the
difficulty of implementation, thereby affecting the feasibility
of a method. When the training data scale is reduced, many of
the methods can not learn enough information from the limited
training data. LogRobust uses a representation that combined
the log event count vector and semantic embedding of event

TABLE IV
PERFORMANCE ON THE SELF-COLLECTED DATASET. THE BEST RESULTS

ARE IN BOLD.

Method Precision Recall F1-score
LogRobust NaN NaN NaN

LogRobust ov NaN NaN NaN
Log2Vec 0.752 0.999 0.859

NeuralLog 0.982 0.972 0.977
LogRep 0.986 0.986 0.986

templates, this representation shows good performance when
trained with sufficient data. But when the training data is
reduced to a limit, the information loss in the template parsing
stage is not negligible. Regarding the anomaly samples being
fewer in each dataset, when the training scale is limited,
it will be very difficult to learn about the features of the
anomaly. Even with the help of the oversampling mechanism,
the LogRobust ov model is not available on the BGL dataset.
The output tested of the anomaly detection model trained on
a such scale of data samples are all negative, which means all
samples are predicted as normal. PLELog is also designed for
situations with sufficient training data, therefore cannot learn
enough information when training data is not sufficient.

G. RQ3: To what degree do the newly introduced modules in
LogRep contribute to log anomaly detection?

To evaluate the improvements by introducing the position-
aware numeric representation learning module and attention-
based representation fusion module for log anomaly detection,
especially under situations lacking adequate data samples, we
conduct several variants of LogRep to test the contribution
of each module. In LogRep, the semantic embedding s,
numeric vector n, and the position vector p are combined
with the attention-based fusion method. In Table V, LogRep S

indicates the representation using semantic embedding only.
LogRep SN uses semantic embedding and numeric vectors
to create a concatenated representation. LogRep SP similarly
concatenate semantic embedding and positional pattern vec-
tors, and LogRep SPN indicates the representation is gener-
ated with all three parts concatenated together.

Compared to the traditional approaches, we use numeric and
positional information and designed the method to integrate
those unstructured data. So we measure the effectiveness of
this improvement from two aspects, including the vanilla form
with the semantic sequence only, the combined data of event
and number and position vectors via simple concatenation.
We use the F1-score of the anomaly detection result as
a metric to measure the contribution of each part of the
representation. In order to present the effectiveness of each
representation method, we use the transformer model with the
same parameters setting to test the performance, except that
some layer dimensions are different, only to match the input
feature vector dimension.

As shown in Table V, the result of the ablation study shows
that the numeric parts and positional information can be used
to improve the performance of anomaly detection, but the

50% 20% 10% 5% 2% 1%
training data

0.0

0.2

0.4

0.6

0.8

F1
-s

co
re

LogRep
Neurallog
PLELog
LogRobust
LogRobust_ov
Log2Vec

(a) The f1-score with different
scale of training data on BGL
dataset

50% 20% 10% 5% 2% 1%
training data

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

LogRep
Neurallog
PLELog
LogRobust
LogRobust_ov
Log2Vec

(b) The f1-score with different
scale of training data on HDFS
dataset

Fig. 4. The F1 scores of LogRep, NeuralLog, PLElog, LogRobust and
Log2Vec with with different scale of training data on HDFS and BGL dataset.

TABLE V
THE PERFORMANCE WITH DIFFERENT REPRESENTATION METHODS IN

TERMS OF F1 SCORE. THE BEST RESULTS ARE IN BOLD.

BGL HDFS
Train data 50% 10% 1% 50% 10% 1%
LogRep S 0.872 0.640 0.744 0.986 0.829 0.637

LogRep SN 0.593 0.542 0.318 0.942 0.795 0.158
LogRep SP 0.713 0.607 0.252 0.925 0.673 0.574

LogRep SPN 0.652 0.585 0.67 0.963 0.832 0.364
LogRep 0.778 0.816 0.823 0.985 0.936 0.936

simple concatenation of those vectors is not enough. Compared
to the LogRep S with pure semantic embedding as feature
data, when the positional vector or number vector is concate-
nated with it, the actual performance is not always better,
sometimes LogRep P and LogRep N even performs worse
than the embedding without numeric information. But LogRep
applied position-aware numeric representation which adopted
an attention mechanism to obtain the relation between two
types of information. Compared with LogRep SPN , LogRep
achieves a better performance in each experiment, especially
when the data scale is restricted.

V. DISCUSSION

In response to the three limitations proposed in Section I,
we make the following discussion and analyze how LogRep
addresses the limitations as well as the potential improvement
of our work.

Without using any log parser, LogRep outperforms
existing template-based methods. As mentioned above, the
log parsing work needs a lot of handcrafted work and domain-
specific knowledge which limits its use on new datasets.
Moreover, the template-based log anomaly detection methods
can only extract hundreds or even fewer templates from
millions of raw logs. In this parsing process, a lot of valuable
information is missing and then the anomaly detection module
detects the abnormal behavior through several long template
sequences. In this way, the length of the sequence becomes
another sensitive hyper-parameter. However, LogRep adopts
the SOTA NLP method, i.e., Bert, to represent the semantic
information which captures more comprehensive information
than template-based methods.

With a novel representation learning module and fusion
module, LogRep succeeds to utilize the numeric informa-

tion. We have demonstrated the usage of numeric information
for log anomaly detection with a small case in Figure 1 and the
results of the experiments also confirm the benefit of numeric
parts. However, utilizing numeric information properly is not
a trivial task since the numeric parts occur in various places
and with varying lengths. Therefore, we propose the position-
aware numeric representation learning module to consider the
impact of the position and the different contributions from
different numeric parts. Further, we design the attention-based
representation fusion module to fuse the numeric representa-
tion and semantic representation so that the contribution of
each part can vary with the different logs.

With the high-quality representation, LogRep achieves
SOTA performance with much less training data. Like the
classical classification problem, the training dataset is sup-
posed to provide sufficient positive and negative labeled data,
to enable the machine learning models to learn classification
boundaries well. This is the same with anomaly detection
methods. The specific challenge for anomaly detection is that
in real situations it is not always possible to provide sufficient
abnormal samples. Therefore, the quality of representation
plays a decisive role in the anomaly detection process with
limited training data. As shown in Table II and Table III, some
methods, e.g., PLELog and LogRobust become invalid as the
training data decreases, which reflects the complexity of the
detection process. LogRep makes use of both semantic and
numeric parts in each raw log and learns the information with
neural networks automatically. With a more comprehensive log
representation, a simple anomaly detector can detect abnormal
behavior easily.

The LogRep is not only a log anomaly detection method
but also a general log representation learning method that can
be used for classification or sequence prediction tasks. The
anomaly detection module can be also substituted by other
detectors or classifiers. Moreover, LogRep can be extended to
semi-supervised or unsupervised log representation methods.

VI. CONCLUSION

In this paper, we focus on the log-based anomaly detection
models about the insufficient utilization of log information in
log processing methods and the large data scale requirements
in training data. To optimize the anomaly detection model, we
propose a novel log representation method LogRep, bringing
in the numeric blocks in the log messages, in combination with
their position information, providing a more representative fea-
ture vector generation approach. To examine the improvement
by using the novel feature vector representation, we conduct
an experiment on the public datasets BGL, HDFS, and a self-
collected dataset.

ACKNOWLEDGMENT

This work was partially supported by the National Nat-
ural Science Foundation of China (No. 62002371 and
No.62172431), and the National University of Defense Tech-
nology Foundation (No. ZK21-17).

REFERENCES

[1] 2020. Bert Model. https://github.com/google-research/
bert.

[2] 2021. DeepLoglizer. https://github.com/logpai/
deep-loglizer.

[3] 2021. Public Dataset Samples. https://github.com/logpai/
loghub.

[4] Jeanderson Candido, Maurı́cio Aniche, and Arie van
Deursen. 2019. Contemporary software monitoring:
A systematic literature review. arXiv e-prints (2019),
arXiv–1912.

[5] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan,
and Eric Brewer. 2004. Failure diagnosis using decision
trees. In International Conference on Autonomic Com-
puting, 2004. Proceedings. IEEE, 36–43.

[6] Marcello Cinque, Domenico Cotroneo, and Antonio Pec-
chia. 2012. Event logs for the analysis of software
failures: A rule-based approach. IEEE Transactions on
Software Engineering 39, 6 (2012), 806–821.

[7] Min Du and Feifei Li. 2016. Spell: Streaming parsing
of system event logs. In 2016 IEEE 16th International
Conference on Data Mining (ICDM). IEEE, 859–864.

[8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar.
2017. DeepLog: Anomaly Detection and Diagnosis from
System Logs through Deep Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017, Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu (Eds.). ACM, 1285–1298. https://doi.org/10.1145/
3133956.3134015

[9] Qiang Fu, Jian-Guang Lou, Qingwei Lin, Rui Ding,
Dongmei Zhang, and Tao Xie. 2013. Contextual analysis
of program logs for understanding system behaviors.
In 2013 10th Working Conference on Mining Software
Repositories (MSR). IEEE, 397–400.

[10] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui
Ding, Qingwei Lin, Dongmei Zhang, and Tao Xie. 2014.
Where do developers log? an empirical study on logging
practices in industry. In Companion Proceedings of the
36th International Conference on Software Engineering.
24–33.

[11] Haixuan Guo, Shuhan Yuan, and Xintao Wu. 2021. Log-
BERT: Log Anomaly Detection via BERT. In 2021 Inter-
national Joint Conference on Neural Networks (IJCNN).
1–8. https://doi.org/10.1109/IJCNN52387.2021.9534113

[12] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and
Michael R. Lyu. 2016. An Evaluation Study on Log
Parsing and Its Use in Log Mining. In 46th Annual
IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, DSN 2016, Toulouse, France, June
28 - July 1, 2016. IEEE Computer Society, 654–661.
https://doi.org/10.1109/DSN.2016.66

[13] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R
Lyu. 2017. Towards automated log parsing for large-scale

log data analysis. IEEE Transactions on Dependable and
Secure Computing 15, 6 (2017), 931–944.

[14] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R
Lyu. 2017. Drain: An online log parsing approach with
fixed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[15] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang,
Yuxin Su, and Michael R. Lyu. 2021. A Survey on
Automated Log Analysis for Reliability Engineering.
ACM Comput. Surv. 54, 6 (2021), 130:1–130:37. https:
//doi.org/10.1145/3460345

[16] Shilin He, Jieming Zhu, Pinjia He, and Michael R
Lyu. 2016. Experience report: System log analysis
for anomaly detection. In 2016 IEEE 27th international
symposium on software reliability engineering (ISSRE).
IEEE, 207–218.

[17] Shilin He, Jieming Zhu, Pinjia He, and Michael R
Lyu. 2020. Loghub: a large collection of system log
datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448 (2020).

[18] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional
LSTM-CRF models for sequence tagging. arXiv preprint
arXiv:1508.01991 (2015).

[19] Zhen Ming Jiang, Ahmed E Hassan, Parminder Flora,
and Gilbert Hamann. 2008. Abstracting execution logs to
execution events for enterprise applications (short paper).
In 2008 The Eighth International Conference on Quality
Software. IEEE, 181–186.

[20] Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov. 2016.
Fasttext. zip: Compressing text classification models.
arXiv preprint arXiv:1612.03651 (2016).

[21] Subhendu Khatuya, Niloy Ganguly, Jayanta Basak, Mad-
humita Bharde, and Bivas Mitra. 2018. Adele: Anomaly
detection from event log empiricism. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications.
IEEE, 2114–2122.

[22] Van-Hoang Le and Hongyu Zhang. 2021. Log-based
anomaly detection without log parsing. In 2021 36th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE). IEEE, 492–504.

[23] Xiaoyun Li, Pengfei Chen, Linxiao Jing, Zilong He,
and Guangba Yu. 2020. SwissLog: Robust and Unified
Deep Learning Based Log Anomaly Detection for Di-
verse Faults. In 31st IEEE International Symposium on
Software Reliability Engineering, ISSRE 2020, Coimbra,
Portugal, October 12-15, 2020, Marco Vieira, Henrique
Madeira, Nuno Antunes, and Zheng Zheng (Eds.). IEEE,
92–103. https://doi.org/10.1109/ISSRE5003.2020.00018

[24] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ra-
mendra Sahoo. 2007. Failure prediction in ibm bluegene/l
event logs. In Seventh IEEE International Conference on
Data Mining (ICDM 2007). IEEE, 583–588.

[25] Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017).

https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/logpai/deep-loglizer
https://github.com/logpai/deep-loglizer
https://github.com/logpai/loghub
https://github.com/logpai/loghub
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/IJCNN52387.2021.9534113
https://doi.org/10.1109/DSN.2016.66
https://doi.org/10.1145/3460345
https://doi.org/10.1145/3460345
https://doi.org/10.1109/ISSRE5003.2020.00018

[26] Jian-Guang Lou, Qiang Fu, Shenqi Yang, Ye Xu, and
Jiang Li. 2010. Mining invariants from console logs
for system problem detection. In 2010 USENIX Annual
Technical Conference (USENIX ATC 10).

[27] Adetokunbo Makanju, A Nur Zincir-Heywood, and
Evangelos E Milios. 2010. Fast entropy based alert
detection in super computer logs. In 2010 International
Conference on Dependable Systems and Networks Work-
shops (DSN-W). IEEE, 52–58.

[28] Leland McInnes, John Healy, and Steve Astels. 2017.
hdbscan: Hierarchical density based clustering. J. Open
Source Softw. 2, 11 (2017), 205.

[29] Weibin Meng, Ying Liu, Yuheng Huang, Shenglin Zhang,
Federico Zaiter, Bingjin Chen, and Dan Pei. 2020. A
semantic-aware representation framework for online log
analysis. In 2020 29th International Conference on Com-
puter Communications and Networks (ICCCN). IEEE, 1–
7.

[30] Haibo Mi, Huaimin Wang, Yangfan Zhou, Michael Rung-
Tsong Lyu, and Hua Cai. 2013. Toward fine-grained,
unsupervised, scalable performance diagnosis for pro-
duction cloud computing systems. IEEE Transactions
on Parallel and Distributed Systems 24, 6 (2013), 1245–
1255.

[31] Karthik Nagaraj, Charles Killian, and Jennifer Neville.
2012. Structured comparative analysis of systems logs to
diagnose performance problems. In 9th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 12). 353–366.

[32] Adam Oliner, Archana Ganapathi, and Wei Xu. 2012.
Advances and challenges in log analysis. Commun. ACM
55, 2 (2012), 55–61.

[33] Adam Oliner and Jon Stearley. 2007. What supercom-
puters say: A study of five system logs. In 37th annual
IEEE/IFIP international conference on dependable sys-
tems and networks (DSN’07). IEEE, 575–584.

[34] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin,
and Sumayah Alrwais. 2015. Detection of early-stage
enterprise infection by mining large-scale log data. In
2015 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 45–56.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
2019. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems 32 (2019).

[36] Antonio Pecchia, Domenico Cotroneo, Zbigniew Kalbar-
czyk, and Ravishankar K Iyer. 2011. Improving log-
based field failure data analysis of multi-node computing
systems. In 2011 IEEE/IFIP 41st International Confer-
ence on Dependable Systems & Networks (DSN). IEEE,
97–108.

[37] Daan Schipper, Maurı́cio Aniche, and Arie van Deursen.
2019. Tracing Back Log Data to its Log Statement:
From Research to Practice. In 2019 IEEE/ACM 16th

International Conference on Mining Software Reposi-
tories (MSR). 545–549. https://doi.org/10.1109/MSR.
2019.00081

[38] Bianca Schroeder and Garth A Gibson. 2009. A large-
scale study of failures in high-performance computing
systems. IEEE transactions on Dependable and Secure
Computing 7, 4 (2009), 337–350.

[39] Stefan Thaler, Vlado Menkonvski, and Milan Petkovic.
2017. Towards a neural language model for signature
extraction from forensic logs. In 2017 5th International
Symposium on Digital Forensic and Security (ISDFS).
IEEE, 1–6.

[40] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-Read Students Learn Better: On
the Importance of Pre-training Compact Models. arXiv
preprint arXiv:1908.08962v2 (2019).

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. 2017. Attention is all you need.
Advances in neural information processing systems 30
(2017).

[42] R Vinayakumar, KP Soman, and Prabaharan Poornachan-
dran. 2017. Long short-term memory based operation log
anomaly detection. In 2017 International Conference on
Advances in Computing, Communications and Informat-
ics (ICACCI). IEEE, 236–242.

[43] Lingzhi Wang, Nengwen Zhao, Junjie Chen, Pinnong
Li, Wenchi Zhang, and Kaixin Sui. 2020. Root-cause
metric location for microservice systems via log anomaly
detection. In 2020 IEEE International Conference on
Web Services (ICWS). IEEE, 142–150.

[44] Wei Wang, Songlei Jian, Yusong Tan, Qingbo Wu, and
Chenlin Huang. 2022. Representation learning-based
network intrusion detection system by capturing explicit
and implicit feature interactions. Computers & Security
112 (2022), 102537.

[45] Wei Wang, Songlei Jian, Yusong Tan, Qingbo Wu, and
Chenlin Huang. 2023. Robust unsupervised network
intrusion detection with self-supervised masked con-
text reconstruction. Computers & Security 128 (2023),
103131.

[46] Wei Xu, Ling Huang, Armando Fox, David Patterson,
and Michael I Jordan. 2009. Detecting large-scale system
problems by mining console logs. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems
principles. 117–132.

[47] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun
Jiang, Xuyuan Dong, and Wenbin Zhang. 2021. PLELog:
Semi-Supervised Log-Based Anomaly Detection via
Probabilistic Label Estimation. In 43rd IEEE/ACM Inter-
national Conference on Software Engineering: Compan-
ion Proceedings, ICSE Companion 2021, Madrid, Spain,
May 25-28, 2021. IEEE, 230–231. https://doi.org/10.
1109/ICSE-Companion52605.2021.00106

[48] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan,
Yuanyuan Zhou, and Shankar Pasupathy. 2010. Sherlog:

https://doi.org/10.1109/MSR.2019.00081
https://doi.org/10.1109/MSR.2019.00081
https://doi.org/10.1109/ICSE-Companion52605.2021.00106
https://doi.org/10.1109/ICSE-Companion52605.2021.00106

error diagnosis by connecting clues from run-time logs.
In Proceedings of the fifteenth International Conference
on Architectural support for programming languages and
operating systems. 143–154.

[49] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei
Jiang, Konstantinos Pelechrinis, and Hui Zhang. 2016.
Automated IT system failure prediction: A deep learning
approach. In 2016 IEEE International Conference on Big
Data (Big Data). IEEE, 1291–1300.

[50] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu
Zhang, Yingnong Dang, Chunyu Xie, Xinsheng Yang,
Qian Cheng, Ze Li, Junjie Chen, Xiaoting He, Randolph
Yao, Jian-Guang Lou, Murali Chintalapati, Furao Shen,
and Dongmei Zhang. 2019. Robust log-based anomaly
detection on unstable log data. In Proceedings of the
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26-30, 2019, Marlon Dumas, Dietmar
Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM,
807–817. https://doi.org/10.1145/3338906.3338931

[51] Yining Zhao and Haili Xiao. 2016. Extracting log
patterns from system logs in large. In 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 1645–1652.

[52] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chao Ji, Dewei
Liu, Qilin Xiang, and Chuan He. 2019. Latent error
prediction and fault localization for microservice applica-
tions by learning from system trace logs. In Proceedings
of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 683–694.

[53] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi
Xie, Zibin Zheng, and Michael R Lyu. 2019. Tools
and benchmarks for automated log parsing. In 2019
IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-
SEIP). IEEE, 121–130.

https://doi.org/10.1145/3338906.3338931

