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A B S T R A C T

Multimodal fake news detection, which aims to detect fake news across vast amounts of
multimodal data in social networks, greatly contributes to identifying potential risks on the
Internet. Although numerous fake news detection methods have been proposed and achieved
some progress in recent years, almost all existing methods rely solely on global semantic features
to detect fake news while ignoring that fake news is not consistently semantically similar. To fill
the gap between news semantic feature space and fake news decision space, we propose a novel
method, i.e., Contextual Semantic representation learning for multimodal Fake News Detection
(CSFND), by introducing the context information into the representation learning process.
Specifically, CSFND implements an unsupervised context learning stage to acquire the local
context features of news, which are then fused with the global semantic features to learn the
contextual semantic representation of news. In our proposed representation space, semantically
dissimilar fake news is explicitly isolated and distinguished from real news separately. Moreover,
CSFND devises a contextual testing strategy aimed at distinguishing between fake and real
news within the data having similar semantics, wherein the learned decision boundaries are
impervious to the semantic characteristics. Extensive experiments conducted on two real-world
multimodal datasets demonstrate that CSFND significantly outperforms ten state-of-the-art
competitors in detecting fake news and outperforms the best baselines on two datasets by 2.5%
on average in terms of Accuracy.

. Introduction

Fake news spreading on social networks hurts the credibility of official news and even causes crimes worldwide (Alam et al.,
022; Shu et al., 2017). Detecting fake news by extracting features from multimodal data has attracted increasing attention and
chieved remarkable progress in recent years (Jing et al., 2023; Yu et al., 2022; Zheng et al., 2022). In general, most existing
ultimodal fake news detection methods aim to detect fake news relying solely and totally on semantic features inherent to news

extual and visual contents (Qian et al., 2021; Wu et al., 2021). However, not all fake news is semantically similar, which means
he distribution of news global semantic features is inconsistent with the fake news decision space, making the decision boundary
etween fake and real news hard to learn. Typically, decision boundaries refer to lines or surfaces that separate different classes
n the data space. In representation learning, the representation space in which we learn the decision boundaries to classify data
epresentations is known as the decision space.
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Fig. 1. Some real-world fake and real news on Twitter. The news distribution in the (a) global semantic feature space is inconsistent with it in the (b) optimal
decision space. However, in our proposed (c) contextual semantic representation space, the context information can bridge the semantic and decision space gap.

We present some real-world news from the most popular social media platform Twitter.1 as an example to illustrate the global
semantic feature space, optimal decision space, and our proposed contextual semantic representation space in Fig. 1 In the (a) global
semantic feature space, the distribution demonstrates the natural semantic clusters of the news. While in the (b) optimal decision
space, the news is divided into fake and real classes, and the fake news, which is semantically dissimilar, is pushed together, whose
distribution is quite different from that in the global semantic feature space. The distribution disparity and inconsistency between
the global semantic feature space and optimal decision space make it hard for detection methods to fit the correct boundary between
fake and real news.

To address the inconsistency problem, we propose a novel detection method, the Contextual Semantic representation Learning
for multimodal Fake News Detection, short for CSFND. CSFND leverages the context information extracted from news to bridge
the gap between the global semantic feature space and the optimal decision space. Specifically, CSFND comprises two stages: the
unsupervised context learning stage and the supervised contextual detection stage. The unsupervised context learning stage aims to
learn the local context features of news, which reflect the news’s intrinsic semantic cluster structure. After that, in the supervised
contextual detection stage, CSFND selectively combines the learned local context features and global semantic features of news and
maps the news into the contextual semantic representation space, in which the local boundaries between fake and real classes within
each semantic context are much easier to learn, as shown in Fig. 1(c). Then, the learned textual and visual representations of news
are fused to obtain the multimodal representation. Several local fake news detectors are trained to distinguish fake and real news
concerning context information differences. Finally, in the inference part, the test news data are assigned to the news groups with
similar context information. Then, the corresponding local fake news detector is applied to detect whether the test news is fake or
real.

The main contributions of this paper are summarized below.

• We reveal a new observation in the fake news detection task indicating a huge distribution gap between the semantic space
and the decision space, which is ignored by almost all existing multimodal fake news detection methods.

• Based on the observation, we propose a novel multimodal fake news detection method, i.e., CSFND, which incorporates context
information to learn the contextual semantic representations to alleviate the inconsistency between the semantic space and
the decision space and precisely detect fake news within the context information.

1 https://twitter.com/
2
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• CSFND is an inductive method allowing for the dynamic handling of unseen and newly introduced news. By assigning new
data to appropriate news group containing existing data with similar context information, CSFND can effectively distinguish
the truthfulness of the new data based on the trained local fake news detector.

Extensive experiments on two real-world multimodal datasets verify the effectiveness of CSFND in detecting fake news compared
ith SOTA methods. The ablation study demonstrates the contribution of our proposed components. The visualization shows that

he learned contextual semantic representations keep the local context features of news and reflect clear boundaries between fake
ews and real news.

. Related work

This section briefly reviews the works related to the fake news detection task from unimodal and multimodal methods.

.1. Unimodal methods

Numerous works investigating the fake news detection task focus on the textual modality of news by analyzing the post texts,
ser profiles, social metadata, and retweets of news (Huang et al., 2023; Jiang et al., 2022; Lu et al., 2022; Wang et al., 2022).
n the beginning, linguistic and statistical characteristics of text content, such as count of opinion words, sentiment, and stylistic
eatures, are used to detect fake news (Kwon et al., 2013; Popat et al., 2016). However, with the evolution and progress in fake news
reation, these hand-designed characteristics are insufficient to distinguish fake news that leveled up (Shu et al., 2017). Therefore,
o accurately identify news, researchers have resorted to leveraging machine learning and deep neural networks to extract more
omprehensive and generalized fake news features (Allein et al., 2023; Kochkina et al., 2023; Zhang et al., 2023). Within this
ontext, adopting Recurrent Neural Networks (RNN) or attention mechanism (Bahdanau et al., 2015) has proven to be instrumental
n learning fake news representations in a time series (Chen et al., 2018; Luvembe et al., 2023). Recently, many works construct
raphs using social metadata or the news propagation path to effectively and accurately identify fake news (Song et al., 2021; Xu
t al., 2022; Yang et al., 2020).

By mining features from the textual modality of news, these neural network-based methods have achieved remarkable
erformance in detecting fake news.

.2. Multimodal methods

As images appear increasingly on social networks, which attract more attention and provide extra information, researchers exploit
mage content to help detect fake news (Alam et al., 2022). Through the extraction of both the textual and visual features of news,
he multimodal methods exhibit a superior ability in detecting fake news compared to methods solely using textual features (Wei
t al., 2022; Xue et al., 2021; Zheng et al., 2022; Zhou et al., 2020). Intuitively, the features of each modality can be extracted using
arge-scale textual and visual pre-trained models and concatenated as multimodal representations of news, which are then put into
binary classifier for detecting fake news (Singhal et al., 2020, 2019). Further, attention and transformer (Vaswani et al., 2017) is
idely employed to extract correlated characteristics or integrating cross-modal features between textual and visual modalities (Jin
t al., 2017; Qian et al., 2021; Wu et al., 2021). MVAE (Khattar et al., 2019) utilizes the variational autoencoder to reconstruct
he text and image content of news and applies a binary classifier on the latent representation to detect fake news. SAFE (Zhou
t al., 2020) measures the within-modal relationship of both modalities and cross-modal similarity of news to distinguish fake news.
oreover, by introducing real-world knowledge graphs, researchers draw on extra information to help determine whether the news

s true or false (Wang et al., 2020). CAFE (Chen et al., 2022) designs a cross-modal ambiguity learning module to tackle the inherent
mbiguity across different content modalities.

In recent years, some researchers have shared similar concerns with our thought. The different characteristics of news related
o distinct topics or events (Castelo et al., 2019; Hu et al., 2021; Min et al., 2022) and news in specific domains (Nan et al., 2021;
ilva et al., 2021; Zhu et al., 2022) are considered in the fake news detection process. In addition, the different topics to which users
nd publishers of news belong are also considered in the judgment of fake news (Bazmi et al., 2023). However, these works focus
nly on analyzing the text content to detect fake news, which is insufficient for the multimodal fake news detection task. For the
ultimodal news, only works EANN (Wang et al., 2018) and MKEMN (Zhang et al., 2019) have noticed the influence of news events.
owever, the authors in EANN and MKEMN extract the event-invariant features of news to exclude the impact of the difference
ther than making use of it. In this work, instead, we take advantage of the inconsistency and propose an effectively multimodal
ake news method dealing with news text and image content. Furthermore, we introduce the context information of news, a general
oncept that the topic, event, or domain essentially refers to within the broader realm., to eliminate the inconsistency between the
3

ews semantic feature space and optimal decision space.
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Fig. 2. The overall structure of CSFND. The (a) unsupervised context learning stage is to extract the context information of news, which is illustrated in
(i) local context feature space. In the (b) supervised contextual detection stage, we learn the contextual semantic representation, illustrated in (ii) contextual
semantic representation space, in textual and visual modalities, clearly reflecting the local boundaries between fake and real news. Based on the fused multimodal
representation, a set of classifiers is applied to detect fake news concerning different context information. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

3. Problem statement

Typically, fake news refers to a news story or message disseminated via media, bearing false information irrespective of the
underlying methods and intentions (Sharma et al., 2019). The fake news detection task aims to determine whether a news article
from social media is fake or real, typically formalized as a binary classification problem. Further, the objective of multimodal fake
news detection task is to distinguish fake and real news by analyzing the news characteristics from multiple modalities, including
the textual content 𝑇 and visual content 𝐼 of the news. Specifically, given the training set of news tr = {(𝑇𝑖, 𝐼𝑖, 𝑦𝑖)}

𝑁tr
𝑖=1 , where 𝑁tr

is the training data size, (𝑇𝑖, 𝐼𝑖) is a text-image pair attached to one piece of news, and 𝑦𝑖 ∈ {1, 0} indicates the label of this news,
showing whether it is fake (𝑦𝑖 = 1) or real (𝑦𝑖 = 0). In this paper, we dedicate to constructing a detection model that can accurately
predict the label of news concerning its text and image contents: 𝐹 (𝑇 , 𝐼) → �̂� ∈ {0, 1}.

4. The proposed method

In this section, we describe the proposed method CSFND in detail. The overall structure of CSFND is shown in Fig. 2. Specifically,
the unimodal feature learner module aims to extract modality-specific features of each modality (Section 4.1). Then, in the
unsupervised context learning stage, we introduce the context information of news into the representation learning process with
the help of clustering techniques (Section 4.2). The supervised contextual detection stage involves the procedure of representation
learning, the design of the loss functions, and the prediction of test data labels (Section 4.3). We finally illustrate the training and
inference procedures of CSFND by giving the pseudo codes (Section 4.4).

4.1. Unimodal feature learner

Since the data characteristics of different modalities are diverse, we first employ two unimodal feature learners on the text and
image contents of news to extract modality-specific textual and visual unimodal features, respectively. We denote the unimodal
textual features extracted from the text content 𝑇 as 𝒔 ∈ R𝑑𝑇 and the unimodal visual features extracted from the image content
𝐼 as 𝒗 ∈ R𝑑𝐼 . With the development of deep neural networks, the large-scale pre-trained language models and vision models
have attracted increasing attention (Yang, Feng, et al., 2019). They have been proven effective in capturing semantic features and
improved performance in various downstream tasks related to text and image (Khan et al., 2019; Qiu et al., 2020). Therefore, we
utilize pre-trained models, such as BERT (Devlin et al., 2019) and XLNet (Yang, Dai, et al., 2019) for texts, VGG (Simonyan &
Zisserman, 2015) and ResNet (He et al., 2016) for images, to serve as unimodal feature learners, extracting the modality-specific
unimodal features. Thereafter, without loss of generality, we introduce the following of our method by taking the visual modality
as a showcase until the multimodal fusion module.

4.2. Unsupervised context learning stage

Considering the essence of multimedia news, which is textual discussions or pictures of specific topics in real life, the natural
semantic clusters are a kind of context information that can bridge the gap between semantic space and decision space. Therefore,
4
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Fig. 3. After cluster-based triplet learning, the positive samples (color in green, having the same pseudo-label with the anchor sample) are closer to the anchor
ample than the negative samples (color in orange, having the opposite pseudo-label with the anchor sample). As shown on the left, the easy triplet (A, P1, N)

that satisfies the distance constraint in the cluster-based triple learning training objective provides no contribution to the model training. The semi-hard triplet
(A, P2, N) and hardest triplet (A, P3, N) are useful for training. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

we learn the contexts in the news by incorporating the clustering process. As shown in Fig. 2(a), we first get the cluster pseudo-label
of news through the initial clustering network and then learn the local context features of news in an unsupervised manner.

Specifically, in clustering initialization, we employ the K-Means algorithm (Sculley, 2010) to cluster the data into 𝐾 clusters and
get the cluster pseudo-label  = {𝑜𝑖}

𝑁tr
𝑖=1 , which indicates the similarity of news context information. We denote 𝑜𝑖 ∈ {0, 1,… , 𝐾}

as the cluster pseudo-label of image 𝒗𝑖. Moreover, we define the set containing images having similar context information, i.e., the
same cluster pseudo-label, with image 𝒗𝑖 as 𝑜𝑖 = {𝒗𝑗}

𝑁tr
𝑗=1, 𝑜𝑗 = 𝑜𝑖.

Since the appearance of triplet learning, it has shown the effectiveness of learning data characteristics based on different distance
relationships (Schroff et al., 2015; Wang et al., 2019). Thus we use triplet learning based on the cluster pseudo-label of news to
learn news local context features. Given the image triplets (𝒗𝑎, 𝒗𝑝, 𝒗𝑛), where 𝒗𝑎 denotes the anchor sample, we define its positive
sample 𝒗𝑝 as the image having the same pseudo-label with 𝒗𝑎, that is, 𝒗𝑝 ∈ 𝑜𝑎 . Meanwhile, the negative sample 𝒗𝑛 has a different
pseudo-label with 𝒗𝑎, that is, 𝒗𝑛 ∈ tr −𝑜𝑎 . As shown in Fig. 3, we encourage the local context feature of 𝒗𝑎 to be closer to images
with similar context information, i.e., the positive sample 𝒗𝑝, and further to images with dissimilar context information, i.e., the
negative sample 𝒗𝑛. Thus we calculate the loss for the unsupervised learning stage as follows:

𝐿unsup =

∑

[

‖𝒄𝑎 − 𝒄𝑝‖22 − ‖𝒄𝑎 − 𝒄𝑛‖22 + 𝛼unsup
]

+, (1)

where 𝛼unsup is a margin that keeps away the distance between negative and positive samples,  = ∀((𝒗𝑎, 𝒗𝑝, 𝒗𝑛)) ∈ tr is the set
of valid triplets, and [𝑥]+ = max(𝑥, 0). Moreover, 𝒄𝑎∕𝑝∕𝑛 ∈ R𝑑 is the local context feature of image 𝒗𝑎∕𝑝∕𝑛 obtained by: 𝒄 = 𝑓unsup(𝒗),
where 𝑓unsup is the clustering-guided context feature learner implemented by neural networks. By minimizing Eq. (1), the local
context features of the anchor sample and positive sample will be 𝛼unsup closer than that of the anchor and negative sample, which
means the learned local context features can distinguish news with different context information. As shown in Fig. 2(i), the local
context features of news with similar context information (features with the same color) are close in the feature space and far away
from news with dissimilar context information (features with different colors).

Further, we design a warm-up strategy for the unsupervised context learning stage. In Fig. 3, concerning the distance difference
of anchor, positive and negative samples in triplet, there are three types of triplets: (1) easy triplet (A, P1, N) that has 𝐿unsup = 0 in
Eq. (1); (2) semi-hard triplet (A, P2, N) with a relatively small 𝐿unsup > 0; (3) hardest triplet (A, P3, N) with a large 𝐿unsup > 0. Since

ost of the triplets in the dataset are easy triplets that would not contribute to the model training, we omit them in our training
rocess. While the semi-hard triplets can help the model training and smooth the training procedure, we first use the semi-hard
riplets to warm up the training and then use both the semi-hard and hardest triplets until convergence. In addition, for the textual
odality, the local context features of news text contents are learned the same as above, except the textual and visual modality
arameters are trained independently. Furthermore, the parameters in the unsupervised context learning stage stay fixed in the later
earning processing.

luster the fused multimodal representations v.s. Cluster the text contents and image contents separately. It is worth noting that the
nsupervised clustering process of our method is carried out on textual and visual modality, respectively, rather than conducting
lustering on the fused multimodal data. We detail the reasons for doing so below. In a general multimodal learning task, the image
nd text modalities usually contain some information that is not available in the other modality, i.e., complementary information.
herefore the multimodal methods are committed to fully extracting the data information from the two modalities, obtaining a
used multimodal representation that can adequately represent the characteristics of the data, and then carrying out subsequent
omprehension or classification operations based on this multimodal representation. But the situation is somewhat different for the
5
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specific task of multimodal fake news detection. In fact, most fake news contains inconsistent text and image content, sometimes even
the opposite. Because of this, a critical point in detecting fake news is to uncover inconsistencies between the text and image content
in news. Therefore, we cannot fuse the text and image data first and then perform feature extraction operations such as clustering
on the fused multimodal representations. Rather, we cluster and extract features for each modality first, uncover the differences
between the two modalities, and then analyze the cross-modal relationships to obtain the fused multimodal representations.

4.3. Supervised contextual detection stage

As shown in Fig. 2(b), we first extract the global semantic features of news. Meanwhile, we implement the context aggregation
odule to aggregate the local context features of news having similar context information. Then we use the gated fusion module

o learn the contextual semantic representations, which reflect the distinction between fake and real news concerning different
ontext information, as in Fig. 2(ii). Through the same unimodal representation learning process, we obtain the contextual semantic
epresentations of news in the textual modality. Then, the two representations from textual and visual modalities are fused as the
ultimodal representation of news. Finally, we design the contextual testing strategy to detect fake news by a set of local classifiers

oncerning different context information.

.3.1. Contextual semantic representation learning
Given the image 𝒗 from one piece of news, we extract its global semantic features by: 𝒓 = 𝑓glo(𝒗), where 𝑓glo is the global

emantic feature learner implemented by neural networks, and 𝒓 ∈ R𝑑 . Intuitively, to introduce the context information into
news representation, we can fuse the learned local context feature 𝒄 with the global semantic feature 𝒓. However, the contextual
characteristics of news are strongly correlated to other news with similar context information, not just to itself. Thus in CSFND,
we design the context aggregation module for learning the aggregated context features of news based on news clusters with
similar context information. In the experiments, we demonstrate that fusing aggregated context features can detect fake news more
effectively than fusing the local context features into news representation.

Given the image 𝒗𝑖 with pseudo-label 𝑜𝑖, 𝑜𝑖 contains news having the same pseudo-label as 𝒗𝑖. We learn the aggregated context
feature 𝒄agg

𝑖 ∈ R𝑑 of 𝒗𝑖 based on the different importance of news having similar context information with 𝒗𝑖 as follows:

𝒄agg
𝑖 =

∑

𝒗𝑗∈𝑜𝑖 ,𝑗≠𝑖
𝛼𝑖𝑗𝒄𝑗 , (2)

here 𝒄𝑗 is the local context feature of 𝒗𝑗 and

𝛼𝑖𝑗 =
𝑒𝑥𝑝(Score(𝒄𝑖, 𝒄𝑗 ))

∑

𝒗𝑙∈𝑜𝑖
𝑒𝑥𝑝(Score(𝒄𝑖, 𝒄𝑙))

. (3)

The function Score(𝒄𝑖, 𝒄𝑗 ) is calculated by:

Score(𝒄𝑖, 𝒄𝑗 ) = 𝑣aggtanh(𝑾 agg[𝒄𝑖; 𝒄𝑗 ]), (4)

where 𝑣agg and 𝑾 agg are parameters to learn, and [𝒄𝑖; 𝒄𝑗 ] means the concatenation of these two.
To selectively fuse the context information with the global semantic features of news, we utilize the gated fusion module to learn

the contextual semantic representation 𝒉𝑖 ∈ R𝑑 of 𝒗𝑖:

𝒉𝑖 = 𝑓gated(𝒓𝑖, 𝒄
agg
𝑖 ). (5)

ince its appearance, the Gated Recurrent Unit (GRU) has been good at extracting critical information from different parts of
he input data (Cho et al., 2014; Litjens et al., 2017). Therefore, we implement the gated fusion module 𝑓gated by GRU. Overall,

the learned contextual semantic representation contains both context information and semantic feature of the news. As shown in
Fig. 2(ii), news with similar context information is tightly gathered and far away from news with different context information.
Meanwhile, fake news and real news are well distinguished, with a clear boundary in each context region. In addition, we obtain
the contextual semantic representation 𝒉T ∈ R𝑑 in textual modality with the same data processing procedure, except that the learned
parameters in the textual modality are trained independently of those in the visual modality.

4.3.2. Multimodal fusion
Furthermore, we use a multimodal fusion module to flexibly absorb features from textual and visual modalities and obtain the

multimodal representation 𝒎 of news. Inspired by the large-scale multimodal pre-training models (Lu et al., 2019; Su et al., 2020;
u et al., 2021), we implement a cross-modal attention network based on the standard multi-head self-attention module (Vaswani

t al., 2017) to fuse features from multiple modalities. Given the learned textual representation 𝒉T and visual representation 𝒉I,
the query matrix 𝑸 of the cross-attention network is derived from the visual modality 𝑯 I, and the key 𝑲 and value 𝑽 matrices
are computed based on the textual representation 𝑯T: 𝑸 = 𝑯 I𝑾 𝑄,𝑲 = 𝑯T𝑾 𝐾 ,𝑽 = 𝑯T𝑾 𝑉 . Then we get the output of one head
attention:

𝑇 √

𝑑 )𝑽 . (6)
6

Attention(𝑸,𝑲 ,𝑽 ) = softmax(𝑸𝑲 ∕ 𝑘
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The rest of the cross-attention network proceeds as the standard multi-head self-attention, including the residual add with the
feed-forward network. Then, we get the attention-pooled textual representation 𝑯𝑇←𝐼 conditioned on the visual features. Similarly,
the attention-pooled visual representation 𝑯𝐼←𝑇 is calculated using textual representation to compute the query matrix and visual
representation for the key and value matrices. Finally, we obtain the fused multimodal representation 𝒎 ∈ R2∗𝑑 by concatenating
the two attention-pooled cross-modal visual and textual representations and feeding them through a linear layer:

𝒎 = 𝑾 fuse[𝑯𝑇←𝐼 ;𝑯𝐼←𝑇 ] + 𝒃fuse. (7)

4.3.3. Context-maintained training loss
In order to distinguish fake news concerning different context information, we design the context-maintained training losses to

train our model, including the context-based triplet loss and intra-context distance loss. The context-based triplet loss aims to separate
the fake and real news within news clusters having similar context information under the constraint of the cluster pseudo-labels
obtained in Section 4.2. Specifically, given the multimodal representation 𝒎𝑎 of one piece of fake news and 𝑜𝑎 consisting of news
having the same cluster pseudo-label with 𝒎𝑎, we refer to the fake news in 𝑜𝑎 as the positive sample 𝒎𝑝 and the real news as the
negative sample 𝒎𝑛. If 𝒎𝑎 is real news, we denote the real news as its positive samples and fake news as negative samples. Then,
we calculate the context-based triplet loss as follows:

𝐿con =
𝐾
∑

𝑜𝑎=1

𝑎
∑

[

‖𝒎𝑎 −𝒎𝑝‖
2
2 − ‖𝒎𝑎 −𝒎𝑛‖

2
2 + 𝛼con

]

+. (8)

The 𝑎 = ∀((𝒎𝑎,𝒎𝑝,𝒎𝑛)) ∈ 𝑜𝑎 consists of valid triplets. The 𝛼con is a margin, and 𝐾 is the cluster number.
Moreover, to strengthen the intra-context relationship, we implement the intra-context distance loss as follows:

𝐿intra = 1
𝑁tr

𝐾
∑

𝑘=1

𝑘
∑

<𝑖,𝑗>
‖𝒎𝑖 −𝒎𝑗‖

2
2, (9)

where 𝑖 and 𝑗 are news having the same pseudo-label, i.e., 𝑜𝑖 = 𝑜𝑗 = 𝑘, and < 𝑖, 𝑗 > represents the pairs in 𝑘 that satisfy 𝑖 ≠ 𝑗. In
fact, the intra-context distance loss aims to compel semantically similar news closer within the representation space, amplifying the
correlation amongst news bearing identical context information. Specifically, for each cluster, we calculate the sum of the distances
between all pairs of news articles. By minimizing the distance summations of all clusters, news representations with similar semantic
features will be closer in their cluster, and news in different clusters will be further away from others in the representation space.

Generally, in multimodal learning, researchers tend to treat one modality as the primary modality containing the leading
information and the other as the complementary modality to assist the learning in the primary modality (Baltrušaitis et al., 2019).
However, for different multimodal datasets, which modality contains the leading information and should be treated as the primary
modality is uncertain. Unfortunately, there is no standard rule for choosing the primary modality. Thus in this work, we design
a strategy to select the primary modality for different datasets. Intuitively, the more precise the characteristics of the data in the
modality, the higher the quality of the data, indicating that the more it should be treated as the primary modality. Conversely, if
the data in the modality is not distinct and contains much noise, it should be treated as a complementary modality providing partly
valid information to assist with the task.

Specifically, we cluster modality-specific data features and evaluate the clusters’ goodness in each modality to select the primary
modality. We think the data characteristics are more precise and explicit in the modality having denser and better-separated clusters,
which will be treated as the primary modality. In this paper, we cluster the textual and visual local context features to choose the
primary modality, as they reflect the leading context information of data. Then we use the Calinski Harabasz score (Caliński &
Harabasz, 1974), which is the ratio of the sum of between-clusters dispersion and inter-cluster dispersion for all clusters, to judge
the clustering result and thus determine the primary modality for different datasets. In the model training, we use the pseudo-label
in the primary modality to calculate the above two losses.

After that, we employ a fake news detector consisting of a fully connected layer followed by the softmax function on the
multimodal representation of news to strengthen the model’s ability to predict input news’ fake or real label �̂� = FC(𝒎). We use the
cross-entropy to calculate the prediction loss:

𝐿pred = −E(𝑑,𝑦)∼(tr ,𝑌 )[𝑦𝑙𝑜𝑔(�̂�) + (1 − 𝑦)𝑙𝑜𝑔(1 − �̂�)], (10)

where 𝑌 is the set of ground truth labels of news.
Overall, the objective of our method is as follows:

𝐿all = 𝜆con𝐿con + 𝜆intra𝐿intra + 𝐿pred. (11)

We set the weight of 𝐿pred to 1 as the baseline weight and optimize the weights of the other two losses, 𝐿con and 𝐿intra, to balance
the individual terms of the overall loss function. By reducing the three hyper-parameters that need optimization to two, we decrease
the computational load and search complexity and improve the search efficiency. Besides, the fake news detection loss 𝐿pred is the
model’s critical training goal and directly correlates with our purpose. We assign its weight to 1, thus making this loss function
predominant, intuitively reflecting the relative significance of each loss function within the model.
7
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4.3.4. Contextual testing
In testing, we implement a set of binary classifiers to detect fake news rather than constructing a single classifier for all data.

oncerning different context information, using multiple classifiers allows for learning simple and clear classification boundaries
ithin each cluster. In contrast, employing a single classifier yields a challenging boundary that is difficult to fit between all the

ake and real news. We first calculate the cluster centers learned by the training data in the unsupervised context learning stage and
hen determine the pseudo-labels of the testing data by measuring the distance between the testing data and the cluster centers. In
his way, all test data is divided into existing clusters containing the training news. After that, for each 𝑘 containing training and

testing data with the same pseudo-label, a binary classifier 𝑔𝑘, 𝑘 ∈ 1, 2,… , 𝐾 is trained by the training data in 𝑘, and then the
classifier is used to predict whether the test data in 𝑘 is fake or real:

�̂� = 𝑔𝑘(𝒎),𝒎 ∈ 𝑘, (12)

where 𝒎 is the multimodal representation of news.

The inductive learning. Practically, the fake news detection strategy proposed in this paper is inductive and can flexibly deal with new
data from unseen semantic clusters. Firstly, once the networks of CSFND are well-trained, we obtain the multimodal representations
and cluster pseudo-labels of all the training data. We then calculate the clustering centers of each cluster based on the multimodal
representations and cluster pseudo-labels, each cluster comprising semantically similar training data. Secondly, we feed the new data
into the well-trained network to acquire its multimodal representation. Then, we compute the distance between this representation
and the centers of all clusters drawn from the training data and allocate the new data to the closest cluster. Regardless of whether
the semantic characteristics of the new data have appeared in the training data, it is certain that by calculating its multimodal
representation and the distance to all cluster centers, we can allocate the new data to an appropriate existing cluster. Finally, we
implement a corresponding binary classifier for each cluster composed of training data and new data. This classifier, trained by
labeled training data from each cluster, can predict the labels of the newly assigned data in the same cluster. In this way, our
method has the flexibility to handle and predict any new data points that have not been seen in the training set. Further, for new
clusters/events, as our clusters are determined by context information similarity rather than the exact event label of news, our model
can find the appropriate clusters for the unseen events most similar to the existing clusters learned by the training data and thus
process new clusters/events.

4.4. Algorithm of CSFND

In order to deliver a clearer understanding of our model training and inference process, we demonstrate the flow of CSFND in
this section.

Algorithm 1 presents the training procedure of CSFND. We first extract the unimodal features of each modality in Step 1. Steps
3-9 are the unsupervised context learning stage, which is carried out separately in the text and image modalities. Thus in step 9,
we get the local context features 𝒄 of the two modalities. For each training batch, the contextual semantic representations 𝒉I and
𝒉T in visual and textual modalities are learned in Step 12. Step 13 is the multimodal fusion procedure. Then, the overall training
loss is computed in Step 14. Step 15 performs back propagation to optimize the network parameters. After several model training
epochs, we obtain the trained CSFND model networks.

Algorithm 1 Training of CSFND
Input: Data in training set - {(𝑇 , 𝐼, 𝑦)} ∈ tr, cluster number 𝐾, epoch of unsupervised stage, epoch of supervised stage
utput: CSFND network - 𝛱
1: Extract unimodal textual/visual features 𝒔/𝒗 of 𝑇 /𝐼
2: for modality in [visual, textual] do
3: Cluster 𝒗/𝒔 into 𝐾 clusters and get pseudo-label 
4: for 𝑖 = 1 to 𝑢𝑛𝑠𝑢𝑝𝑒𝑟_𝑒𝑝𝑜𝑐ℎ do
5: Sample valid triplets (𝒗𝑎, 𝒗𝑝, 𝒗𝑛)
6: Compute loss 𝐿unsup by Eq. (1)
7: Optimize parameters of 𝐿unsup
8: end for
9: Compute 𝒄 ← fix parameters of the unsupervised networks

10: end for
11: for 𝑗 = 1 to 𝑠𝑢𝑝𝑒𝑟_𝑒𝑝𝑜𝑐ℎ do
12: Get contextual semantic representation 𝒉I and 𝒉T by Eq. (5)
13: Get multimodal representation 𝒎 by Eqs. (6)–(7)
14: Calculate loss 𝐿all by Eqs. (8)–(11)
15: Optimize parameters of 𝐿all
16: end for
17: return Trained network 𝛱
8
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Algorithm 2 Inference of CSFND
Input: Training set tr, trained CSFND network 𝛱 , testing set te, cluster number 𝐾
utput: Predicted labels �̂� of test data
1: Get the multimodal representation 𝒎 of train data by 𝛱
2: Compute the 𝐾 cluster centers of train data by 𝒎
3: for data 𝑖 in test set do
4: Get the multimodal representation 𝒎𝑖 of 𝑖 by 𝛱
5: Compute the distance between 𝒎𝑖 and 𝐾 cluster centers
6: Assign 𝑖 into the nearest cluster 𝑘𝑖
7: end for
8: for 𝑘 = 1 to 𝐾 do
9: Build a classifier 𝑔𝑘

10: Train 𝑔𝑘 using the train data in cluster 𝑘
11: Use 𝑔𝑘 to predict the label of test data in cluster 𝑘
12: end for
13: return �̂� of all test data

Table 1
The statistics of Weibo and Twitter
datasets.

Weibo Twitter

# of Fake news 4211 7979
# of Real news 3642 6467
# of Images 7851 476

The inference process of our CSFND network is illustrated in Algorithm 2. Given the data with labels in the training set tr, the
data in the testing set te and the trained network 𝛱 , the inference process aims to predict the fake and real labels �̂� of all the
ata in the test set. In Steps 1 and 2, we use the multimodal representations and the cluster pseudo-labels of the training set data to
ompute the cluster centers of the 𝐾 clusters. Then, by calculating the distance of each test data from the centers of the 𝐾 clusters,
e assign each test set data to its nearest cluster in Steps 3-6. Finally, in Steps 7-11, we train a corresponding binary classifier 𝑔𝑘

or each cluster 𝑘 containing training and test data. The trained classifier 𝑔𝑘 is used to predict the labels of the test data in cluster
𝑘. In this way, we obtain fake and real labels for all test data.

5. Experiments

In this section, we conduct extensive experiments to verify the effectiveness of our method in detecting fake news. We first
describe the detailed experimental setups in Sections 5.1–5.3 and then analyze the experiment results in Sections 5.4–5.7.

5.1. Datasets

We evaluate the performance of our method compared with other baselines on two widely used real-world multimodal fake news
detection datasets, i.e., Weibo (Jin et al., 2017) and Twitter (Boididou et al., 2016). News data in the Weibo and Twitter datasets
are collected from the most popular social media websites worldwide, Weibo2 and Twitter, respectively. Each news data contains
text content and corresponding image content. Remarkably, the Twitter dataset contains fewer distinct images than distinct texts, as
some news articles present different texts with identical attached images. For this case, we process the news articles following the
baseline methods. For each news article with distinct text content, we compose the text content and its attached image as a news
article, forming a single input data for our model. Consequently, some news items have the same image, but since their text content
differs, they are still different input data. As the other works do (Khattar et al., 2019; Wu et al., 2021), we remove the text-only
and image-only news from the datasets, and the videos are out of consideration in the experiments. Also, we keep the same data
split scheme as the benchmark on these two datasets Simple statistics of the datasets are summarized in Table 1.

5.2. Baselines

We compare our method with two types of baselines:

2 https://weibo.com/
9
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• Unimodal methods: To validate the effectiveness of the text and image contents of news for detecting fake news, we select the
language and vision pre-trained models BERT (Devlin et al., 2019), XLNet (Yang, Dai, et al., 2019), and VGG-19 (Simonyan &
Zisserman, 2015) as the unimodal comparison methods. It is because these models are used as unimodal feature extractors in
most existing multimodal fake news detection methods. Meanwhile, the pre-trained models perform well in extracting textual
and visual semantic features. In the experiments, we use the models to extract the textual (BERT and XLNet) or visual (VGG-19)
unimodal representations of news, which are then put into a fully connected layer followed by a softmax function to predict
whether the news is fake or real.

• Multimodal methods: We compare ten multimodal fake news detection methods, including classical fake news detection methods
and SOTA approaches. (1) att-RNN (Jin et al., 2017) fuses textual, visual and social context features by attention. In our
experiments, we remove the component that processes social metadata for a fair comparison. (2) EANN (Wang et al., 2018)
applies an event discriminator on the concatenated multimodal representation to exclude the event-specific features of news.
For a fair comparison, we remove the discriminator in the experiments. (3) MVAE (Khattar et al., 2019) uses the variational
autoencoder to learn the latent representations of text and image, where a binary classifier is used to detect fake news.
(4) SpotFake (Singhal et al., 2019) concatenates unimodal features extracted by BERT and VGG-19 as news’ multimodal
representations. (5) MKEMN (Zhang et al., 2019) uses a convolutional operation to fuse the text, image, and external retrieved
knowledge. In the experiments, we remove the part of retrieved knowledge. (6) SpotFake+ (Singhal et al., 2020) extends
SpotFake by extracting the textual features using XLNet, and then the concatenated multimodal features are also feed into a
binary classifier. (7) SAFE (Zhou et al., 2020) investigates the within-modal relationship of textual and visual modalities and
the cross-modal similarity between two modalities to detect fake news. (8) HMCAN (Qian et al., 2021) designs the multimodal
attention networks based on the self-attention (Vaswani et al., 2017) to fuse the textual and visual features. For news without
images, HMCAN generates dummy images to construct text-image pairs. For a fair comparison, in the experiments, we remove
the news without images, as the other benchmarks do (Jin et al., 2017; Khattar et al., 2019; Zhou et al., 2020). (9) MCAN (Wu
et al., 2021) extracts the spatial-domain and frequency-domain features of the images, which are then fused with the textual
features by multiple cross-modal co-attention blocks. (10) CAFE (Chen et al., 2022) adaptively aggregates the unimodal features
of text and image and the cross-modal correlations to detect fake news.

We keep the same parameter settings reported in their papers for all the baselines. Moreover, we report the overall classification
Accuracy (Acc) and the Precise (Pre), Recall (Rec) and F1 scores for the fake and real news detection, respectively.

5.3. Implementation details

For a fair comparison, we use BERT (Devlin et al., 2019) and VGG-19 (Simonyan & Zisserman, 2015) as the textual and visual
unimodal feature learners in our method CSFND for both datasets, as do most baselines (Singhal et al., 2019; Wu et al., 2021).
For the Twitter dataset with English, we use the bert-base-cased model, and for Weibo with Chinese, we use the bert-base-chinese
model (Wolf et al., 2020).3

For text, each sentence is padded or truncated to have the same number of tokens. The token number 𝑁𝑡𝑜𝑘𝑒𝑛 are 160 and 25
for Weibo and Twitter, respectively. We use BERT to get the embeddings of each token with a dimension of 768. Then, the token
embeddings are concatenated as the unimodal textual feature with 𝑑𝑇 = 𝑁𝑡𝑜𝑘𝑒𝑛 ∗ 768. For images, the unimodal visual feature is
he output of the penultimate linear layer of VGG-19 with a dimension of 𝑑𝐼 = 4096. In our experimental implementation and the
eproductions of baseline methods, the parameters of the pre-trained models employed in all these methods, including BERT, XLNet,
GG-19, and ResNet, are frozen, ensuring a fair comparison.

In CSFND, the dimensions of the local context feature 𝒄, global semantic feature 𝒓, and the aggregated context feature 𝒄agg

f textual and visual modality are all set to 𝑑 = 128. Our learned contextual semantic representation 𝒉 is 128-dimensional. The
imension of multimodal representation is 2 ∗ 𝑑 = 256. Moreover, learner 𝑓unsup consists of two linear layers with the size of 512
nd 128. Learner 𝑓glo is a linear layer with a dimension of 𝑑 = 128. The activate function for them is ReLU. The training epoch is
00, with early stopping on the validation set. Our algorithms are trained by the Adam optimizer (Kingma & Ba, 2014) with a batch
ize of 128. The learning rates for Weibo and Twitter are 0.001 and 0.0005. The optimal hyper-parameters are determined by grid
earching on the validation set, and the selection criterion is accuracy. We get 𝛼unsup = 0.5, 𝛼con = 0.2 and 𝜆con = 0.6, 𝜆intra = 0.2.
he cluster number 𝐾 are 17 and 33 for Weibo and Twitter, respectively.

In testing, each classifier is one linear layer followed by tanh with independent parameters. For each classifier, we record the
umber of true positive, false negative, true negative, and false positive predictions for fake and real news, respectively. Then we
um the numbers of all classifiers to get the number of predictions of the whole test set, which are used to calculate the classification
ccuracy of our method and Precise, Recall and F1 results for fake and real news detection.

.4. Results and analysis

Table 2 displays the results of CSFND and all the baselines on Weibo and Twitter datasets. We can observe that, in terms of the
ccuracy (Acc) and F1 scores for both fake and real news detection, our method outperforms all the baselines on the two datasets.

3 https://github.com/huggingface
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Table 2
Fake news detection results of different methods on Weibo and Twitter datasets.

Model Weibo Twitter

Acc Fake news Real news Acc Fake news Real news

Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

Bert (2019) 0.845 0.858 0.833 0.845 0.833 0.857 0.844 0.642 0.666 0.766 0.711 0.602 0.474 0.526
XLNet (2019) 0.842 0.859 0.826 0.842 0.827 0.859 0.843 0.613 0.644 0.737 0.687 0.557 0.445 0.493
VGG-19 (2015) 0.647 0.640 0.700 0.668 0.657 0.591 0.621 0.767 0.829 0.753 0.787 0.704 0.785 0.740

att-RNN (2017) 0.772 0.854 0.656 0.742 0.720 0.889 0.795 0.664 0.749 0.615 0.676 0.589 0.728 0.651
EANN (2018) 0.782 0.827 0.697 0.756 0.752 0.863 0.804 0.648 0.810 0.498 0.617 0.584 0.759 0.660
MVAE (2019) 0.824 0.854 0.769 0.809 0.802 0.875 0.837 0.745 0.801 0.719 0.758 0.689 0.777 0.730
SpotFake (2019) 0.869 0.877 0.859 0.868 0.861 0.879 0.870 0.771 0.784 0.744 0.764 0.769 0.807 0.787
MKEMN (2019) 0.814 0.823 0.799 0.812 0.723 0.819 0.798 0.715 0.814 0.756 0.708 0.634 0.774 0.660
SpotFake+ (2020) 0.870 0.887 0.849 0.868 0.855 0.892 0.873 0.790 0.793 0.827 0.810 0.786 0.747 0.766
SAFE (2020) 0.763 0.833 0.659 0.736 0.717 0.868 0.785 0.766 0.777 0.795 0.786 0.752 0.731 0.742
HMCAN (2021) 0.790 0.803 0.758 0.780 0.778 0.821 0.799 0.759 0.705 0.745 0.724 0.804 0.770 0.786
MCAN (2021) 0.873 0.944 0.794 0.863 0.817 0.952 0.879 0.796 0.785 0.891 0.835 0.819 0.669 0.736
CAFE* (2022) 0.840 0.855 0.830 0.842 0.825 0.851 0.837 0.806 0.807 0.799 0.803 0.805 0.813 0.809

CSFND 0.895 0.899 0.895 0.897 0.892 0.896 0.894 0.833 0.899 0.799 0.846 0.763 0.878 0.817

The bold values represent the best results. For methods that do not open their source codes, we display the results reported in their papers with *.

Table 3
Fake news detection results of CSFND and its four ablated versions with the improvement rates of CSFND compared to its variants per
dataset. Positive rates are boldfaced.
Model Weibo Twitter

Accuracy F1 of fake F1 of real Accuracy F1 of fake F1 of real

w/o UNSPR 0.852 (+5.0%) 0.853 (+5.2%) 0.851 (+5.1%) 0.658 (+26.6%) 0.676 (+25.1%) 0.638 (+28.1%)
ONE_CLS 0.874 (+2.4%) 0.875 (+2.5%) 0.873 (+2.4%) 0.729 (+14.3%) 0.749 (+13.0%) 0.705 (+15.9%)
w/o AGG 0.848 (+5.5%) 0.848 (+5.8%) 0.848 (+5.4%) 0.741 (+12.4%) 0.747 (+13.3%) 0.736 (+11.0%)
w/ AVG 0.866 (+3.3%) 0.875 (+2.5%) 0.856 (+4.4%) 0.797 (+4.5%) 0.821 (+3.0%) 0.766 (+6.7%)

CSFND 0.895 0.897 0.894 0.833 0.846 0.817

Firstly, the unimodal methods’ results demonstrate that both news text and image contents help detect fake news. Further, for
eibo, the textual methods (BERT, XLNet) perform better than the visual method, while on Twitter, the visual method VGG-19

ains a higher accuracy. It means that in different datasets, the modality containing the leading information is different, textual
odality in Weibo and visual modality in Twitter. As illustrated in Section 4.3.3, in our method, the selected primary modalities

f Weibo and Twitter are textual and visual, respectively, consistent with the detection results of unimodal methods on these two
atasets.

Further, the multimodal methods SpotFake, SpotFake+, MCAN, and our method CSFND perform better than the unimodal
ethods in both datasets, which proves the effectiveness of extracting features from multiple modalities for detecting fake news.
he higher detection results of CSFND than EANN and MKEMN indicate that the effective usage of context information (events
f news) helps distinguish fake news. EANN and MKEMN learn event-irrelevant features, which may lose some essential fake
ews characteristics in the extracted news features. Comparing most detection metrics, especially the Accuracy and F1 scores, on
oth datasets, our method CSFND outperforms all the other baselines. It demonstrates that CSFND, considering the inconsistency
etween the global semantic feature space and the optimal decision space, can better detect fake news according to different context
nformation.

.5. Ablation study

To validate the effectiveness of the proposed components in our method, we carry out the ablation study shown in Table 3. The
ottom row represents the entire model of our method, denoted as CSFND.

.5.1. Effect of the unsupervised context learning stage
The sub-model w/o UNSPR is the reduced model without the unsupervised context learning stage. We fuse the extracted textual

nd visual global semantic features as the multimodal representation of news, which is fed into a classifier to detect fake news.
omparing the results with CSFND, we can observe that the unsupervised context learning stage significantly contributes to detecting

ake news, which means introducing the context information into the news representation learning is helpful.

.5.2. Effect of the contextual testing strategy
In ONE_CLS, we predict the labels of all test data by the detector trained in Eq. (10). The significant improvement of CSFND

ompared to ONE_CLS shows the necessity of applying multiple classifiers concerning different context information in testing, which
11

s much better than using one classifier to learn a complex boundary between all the fake and real news.
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Fig. 4. Impact of the key hyper-parameter cluster number 𝐾 for the F1 score of fake news detection on Weibo dataset of our method CSFND (the line with
color red). The lines with other colors represent the F1 scores achieved by state-of-the-art multimodal fake news methods. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

5.5.3. Effect of the context aggregation module
With the context aggregation module removed, the sub-model w/o AGG gets the contextual semantic representation by fusing

the local context features and global semantic features. In contrast, the sub-model w/ AVG averages the local context features of
news having similar context information, which are then fused with the global semantic features. The higher results of w/ AVG than
w/o AGG show the necessity to extract features from news clusters with similar context information. Their lower results compared
to CSFND indicate the effectiveness of our context aggregation module.

5.6. Sensitivity analysis

In this section, we investigate the influence of different settings of the key hyper-parameters of our method CSFND, including
the cluster number 𝐾, the weights 𝜆con and 𝜆intra of the overall loss function.

.6.1. Impact of the cluster number 𝐾
As shown in Fig. 4, the F1 scores of fake news detection remain stable as the cluster number 𝐾 varies (the line with color red).

To provide a clearer understanding of the F1 scores obtained by setting different values of 𝐾, we also display the F1 scores achieved
y SOTA methods in recent years in Fig. 4 for comparison (the lines with colors not red). By introducing the clustering process into
he fake news detection procedure, our method achieves F1 results on par with the highest fake news detection methods available.
urther, for some values of the cluster number, our method achieves F1 scores higher than all other methods, which means the
ffective use of context information helps to improve the performance of fake news detection.

.6.2. Impact of the weights 𝜆con and 𝜆intra
In this section, we investigate the impact of the different choices of weights 𝜆con and 𝜆intra on the overall loss function in Eq. (11).

n our method, the overall loss function 𝐿all is composed of three terms: context-based triplet loss 𝐿con, intra-context distance loss
𝐿intra and fake news prediction loss 𝐿pred. We assign the weight of 𝐿pred to 1 as the baseline weight. Then, we vary 𝜆con and
𝜆intra from 0.0 to 1.0 with an interval of 0.1 to mirror the relative significance of the three losses within the model. The optimal
hyper-parameters are determined according to the Accuracy results. Fig. 5 illustrates the variations in classification Accuracy under
the joint influence of these two parameters on the Twitter dataset. The highest Accuracy result is achieved when the value of 𝜆intra
is 0.2 and the value of 𝜆con is 0.6. On the Weibo dataset, such parameter settings also yield better results. Thus, we set the weights
𝜆con and 𝜆intra to 0.6 and 0.2 in our experiments.

5.7. Visualization

To further analyze the effectiveness of our method in learning the contextual semantic representations of news and distinguishing
the fake and real news, we qualitatively visualize the representations of the test data in Weibo learned by CSFND and SpotFake
with t-SNE (Laurens & Hinton, 2008) in Fig. 6.

Firstly, sub-figures 6(a) and 6(b) present the local context features and contextual semantic representations learned by CSFND.
In 6(a), the local context features of news with similar context information are gathered closely (different colors represent different
context information), which means our unsupervised context learning stage is effective in capturing the context information of news.
Then, in 6(b), the learned contextual semantic representations can reflect the semantic similarity between news as well as separate
the fake and real news (denoted by symbols ∙ and +). We can see that news representations with similar context information
are mapped together. Meanwhile, the fake and real news within each context region are divided separately and can be easily
distinguished. Taking the data with the color purple as an example, we can see that the purple data in 6(a) are close and far away
12
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Fig. 5. Impact of the key hyper-parameters 𝜆intra and 𝜆con for the Accuracy of fake news detection on Twitter dataset.

Fig. 6. Visualizations of the learned representations of test data on Weibo of CSFND and SpotFake. Symbols ∙ and + represent fake and real news, respectively. In
(a) and (b), different colors denote the group of data with different context information. In (c), different colors represent fake and real news. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

from data with different colors. Then, in 6(b), in the compact region formed by the purple data, the fake and real news are separated
clearly with the local decision boundary easily to determine.

Further, we display the learned multimodal representations of SpotFake in Fig. 6(c). Taking into account the unimodal feature
extraction models of the baselines, we select SpotFake for comparison. In 6(c), SpotFake tries to gather all the fake news together
without considering that the fake news is not all semantically similar. Moreover, it is complex and inconsistent with the natural
characteristics of news, trying to use one boundary to separate all the fake and real news. In contrast, in 6(b), CSFND learns news
representations based on different context information, successes in bridging the gap between the semantic space and decision space.
In our proposed representation space, it is easier to distinguish fake and real news in each context region by learning several local
boundaries. For example, in 6(b), the fake and real news with the color orange and brown can be accurately distinguished by their
corresponding contextual classifiers in our method concerning their different context information. However, for other methods not
considering the context information, like SpotFake in 6(c), these news are mixed and it is hard to find the decision boundary dividing
the fake and real news well. For example, the real news (symbol +) with the color orange may be detected as fake (symbol ∙) as
their representations are closer to the fake news (symbol ∙ of data in orange and brown) and far away from the real news (symbol
+ of data in brown).
13
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6. Discussions

6.1. Implications

First, in detecting fake news, this paper reveals the inconsistency problem between the semantic space and the decision space
f fake and real news, which most existing multimodal fake news detection methods ignore. Existing methods directly classify fake
nd real news in the semantic space of all the news, suffering from the problem that the classification boundary in the global
emantic space is complex and challenging to fit. The experiments carried out in this paper, particularly the visualizations of the
epresentations learned by CSFND and SpotFake, demonstrate that this inconsistency problem exists and that addressing this problem
an improve the performance of fake news detection.

Second, to address the inconsistency problem, this paper proposes a contextual semantic representation space where several
oncise classification boundaries can be learned in local news clusters, considering different context information. Specifically, we
esign the unsupervised context learning stage and use clustering to introduce the context information into the news representation
earning process. The extensive experiments conducted in this paper demonstrate that the inconsistency problem can be addressed
y clustering semantically similar news and detecting fake news within the clusters. CSFND outperforms other comparative methods
n detecting fake news on both Weibo and Twitter datasets, suggesting that our proposed method can improve the performance of
etecting fake news.

.2. Limitations

To address the inconsistency between the global semantic space and the decision space of news, we design unsupervised
lustering-based context learning to introduce the context information into the news representation learning process. Further,
e classify fake and real news in the learned contextual semantic representation space concerning different context information,

.e., detect fake news within each clusters. However, there is still much to be explored to address the inconsistency problem, such
s designing other strategies besides clustering to exploit the inconsistent information or alleviating the impact of the inconsistency
y transfer learning.

In addition, in our implementation, considering the effectiveness and efficiency, we choose the basic K-Means (Sculley, 2010)
lgorithm for clustering and determine the appropriate number of clusters by grid search on the validation set. However, the cluster
umber can be determined in a more flexible way, and alternative clustering algorithms can be explored, such as distribution-based,
ensity-based, hierarchical-based, etc. We plan to investigate the problems further in future works.

. Conclusions

This paper reveals the inconsistency between the global semantic feature space and the optimal decision space in fake news
etection. To solve the problem, we propose the method CSFND to learn the contextual semantic representations in which the local
oundaries between fake and real news are easier to learn concerning different context information. Extensive experiments verify the
ffectiveness of CSFND in detecting fake news, and the qualitative visualization results prove the ability to relieve the inconsistency
roblem.
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