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Abstract

Classic recommender systems face challenges in addressing
the data sparsity and cold-start problems with only modeling
the user-item relation. An essential direction is to incorporate
and understand the additional heterogeneous relations, e.g.,
user-user and item-item relations, since each user-item inter-
action is often influenced by other users and items, which
form the user’s/item’s influential contexts. This induces im-
portant yet challenging issues, including modeling heteroge-
neous relations, interactions, and the strength of the influence
from users/items in the influential contexts. To this end, we
design Influential-Context Aggregation Units (ICAU) to ag-
gregate the user-user/item-item relations within a given con-
text as the influential context embeddings. Accordingly, we
propose a Heterogeneous relations-Embedded Recommender
System (HERS) based on ICAUs to model and interpret the
underlying motivation of user-item interactions by consider-
ing user-user and item-item influences. The experiments on
two real-world datasets show the highly improved recommen-
dation quality made by HERS and its superiority in handling
the cold-start problem. In addition, we demonstrate the inter-
pretability of modeling influential contexts in explaining the
recommendation results.

Introduction

Recommender systems (RSs) are essentially embedded with
heterogeneous relations: user-user couplings, item-item cou-
plings, and user-item couplings (Cao 2015), with which we
call Heterogeneous relations Embedded Recommender Sys-
tems (HERS). It is increasingly recognized that modeling
such multiple heterogeneous relations is essential for un-
derstanding the non-IID nature and characteristics of RSs
(Cao 2016) and addressing such challenges as social, group-
based, context-based, cross-domain, sparse, cold-start, dy-
namic and deep recommendation (Tang, Hu, and Liu 2013;
Hu et al. 2014} Hu et al. 2017b; |Hu et al. 2016; /Do and Cao
2018a; Do and Cao 2018bj; |[Zhang et al. 2018)).
Figure|l|illustrates the concept and motivation of a HERS
containing user-user relations (e.g., friendship), item-item
relations (e.g., the same category), and user-item relations
(e.g., users’ purchase or feedback on items). Given a user
u; in the user social network, her/his selections are often in-
fluenced by friends (Friedkin and Johnsen 2011). Moreover,
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Figure 1: An HERS consists of three heterogeneous re-
lations: user-user, item-item, and user-item. Each user’s
choice is relevant to the corresponding user’s and item’s in-
fluential contexts.

the influences from friends’ friends may transitively influ-
ence u;’s choice. C,, signifies the influential context w.r.t.
u;, which outlines wu;’s influential neighbors and the rela-
tionships between them. Those users in C',, have the con-
siderable influence on wu,’ selection. Similarly, user selec-
tion on an item ¢, is also influenced by i;’s relevant items
which form ¢,’s influential context C;, . For example, we can
infer that u; more probably selects ¢; (Android watch) than
is (Apple watch) if we consider the corresponding influen-
tial contexts C,,,, C;, and Cj_, i.e., the choices from wu;’s
friends and the compatibility of electronic products. This ex-
ample shows that the influential contexts of users and items
indicate how a user’s choice on items is made, thus making
recommendation more accurate and interpretable. The view-
point of HERSs and influential contexts can further address
the sparsity of user-item interactions and both user and item
cold-start problems by referring to the influential users and
items in the contexts.

Modeling an HERS with influential contexts involves var-
ious challenges. In this work, we focus on two major ones:
(1) How to model a user’s and an item’s influential con-
texts behind an observed user-item interaction? (2) How to
learn the strength of influence from different users or items
in the different contexts? These two questions are important
and challenging because the influential contexts for different
user-item interactions are different, and the influence from
each user/item in one context is also different.



Some relevant work includes social RSs (Tang, Hu, and
Liu 2013} Jiang et al. 2014; |[Hu et al. 2017a) which com-
bine collaborative filtering (CF) and social network analysis
(Vasuki et al. 2010; [Tang et al. 2012) by co-factorizing the
rating matrix and the social-relation matrix (Ma et al. 2008;
Jamali and Ester 2010) and adding regularization term ac-
cording to the social closeness (Ma et al. 2011) in matrix
factorization (MF). However, they only consider user rela-
tionships but ignore the influence of relevant items and only
model first-order influences from neighbors and fail to con-
sider higher-order influences from indirect users. Factoriza-
tion machine (FM) (Rendle 2012) represents multiple rela-
tions with a design matrix (Rendle 2013). However, using a
single design matrix for all relations implicitly assumes the
homogeneity of these relations. FM is unable to model the
strengths of influence from the same users/items in different
influential contexts w.r.t. different target users/items. Recent
work on non-IID Rs includes modeling user/item couplings
in explicit user/item metadata and latent user/item factors by
coupled MF (Li, Xu, and Cao 20135)), coupled Poisson fac-
torization (Do and Cao 2018a)) and deep models CoupledCF
(Zhang et al. 2018)).

In this paper, we design Influential-Context Aggregation
Units (ICAUs) to aggregate all user/item influences in a con-
text into an embedding, namely Influential Context Embed-
ding (ICE). Taking ICAUs as the building blocks, we con-
struct an HERS that considers both user’s and item’s influ-
ential contexts when making recommendations. The main
contributions of this work include:

o An HERS framework is proposed to model the heteroge-
neous relations in recommendation tasks by considering
both the user’s and the item’s influential contexts.

e As the building block of the HERS framework, ICAUs
are designed to aggregate all users’/items’ influences in a
context into an ICE as the representation of this influential
context.

e The ICAU-based HERS empowers the interpretability on
recommended results in terms of measuring the strength
of influence from relevant users and items.

We conduct extensive experiments on two real datasets with
heterogeneous relations. The results show the effectiveness
of our method on recommendation quality and its superior-
ity in terms of handling both user and item cold-start and
sparsity problems. In addition, we visualize the learned in-
fluential contexts to interpret the recommendations.

Related Work

We mainly review the work which somehow incorporate the
user-user, user-item and item-item coupling relationships in
RS (Cao 2016). With regard to the user-user relation, clas-
sic RSs consider social relationships in RS by extending CF
models such as by modeling social network relations (Tang,
Hu, and Liu 2013)), SoRec (Ma et al. 2008) to co-factorize
the user-item matrix and the user-user social relation matrix
by sharing the common user latent factor matrix, and So-
cialMF (Jamali and Ester 2010) and SoReg (Ma et al. 2011}
to regularize the user latent factor vector of a target user via

the user latent factor vectors of their trusters. However, so-
cial RSs only incorporate additional information from user
side but ignoring the relevance between items.

Several recent works jointly model multiple relations.
Collective Matrix Factorization (CMF) (Singh and Gordon
2008)) represents these relations in terms of a collection of
coupled matrices with sharing the latent factors along the
coupled dimensions. Then, CMF conducts co-factorization
on these coupled matrices to learn the latent factor matri-
ces. Factorization Machine (FM) (Rendle 2012)) factorizes
the interactions between each pair of features via a design
matrix to represent multiple relations (Rendle 2013)). How-
ever, the above models assume the relations are homoge-
neous but ignore the heterogeneous interactions within and
between users and items. These factorization methods only
model the first-order influences from direct neighbors and
fail to consider to higher order influences in a context.

More recent work is to model both explicit and implicit
user-user, item-item, and user-item couplings (Cao 2015}
Cao 2016)). Coupled Matrix Factorization (Li, Xu, and Cao
2015)) involves user couplings and item couplings into MF.
Coupled Poisson Factorization (Do and Cao 2018a)) inte-
grates user/item metadata and their relations into Poisson
Factorization for large and sparse recommendation. Dy-
namic Matrix Factorization mGDMF (Do and Cao 2018b)
involves a conjugate Gamma-Poisson model by incorporat-
ing metadata influence to effectively and efficiently model
massive, sparse and dynamic recommendations. Deep neural
models have also been incorporated into RSs, e.g., (Wang et
al. 2017) extended the Neural Collaborative Filtering (NCF)
(He et al. 2017) to cross-domain social recommendations,
and a Neural Social Collaborative Ranking (NSCR) model
based on NCF (Wang et al. 2017) seamlessly integrates user-
item interactions from the information domain and the user-
user relationships from the social domain. The Neural Fac-
torization Machine (NFM) extends FM with neural networks
by adding multiple hidden layers to learn non-linear interac-
tions. CoupledCF (Zhang et al. 2018]) learns explicit and im-
plicit user-item couplings in recommendation for deep col-
laborative filtering. However, all these methods only model
pairwise interactions instead of all influences in the influ-
ential contexts. Moreover, they cannot tell the strengths of
influence from each user or item.

The Neural Factorization Machine (NFM) extends FM
with neural networks by adding multiple hidden layers to
learn non-linear interactions. However, all these methods
only model pairwise interactions instead of all influences
in the influential contexts. Moreover, they cannot tell the
strengths of influence from each user or item.

Problem Formulation and Model Architecture

In this section, we formulate the influences of multiple het-
erogeneous relations in RSs, and then present the framework
of modeling influential user/item contexts.

Problem Formulation

In this paper, we aim to build an HERS which exploits the
information learned from user-user, user-item and user-item
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Figure 2: The architecture of HERS for modeling user-item
interaction with user’s and item’s influential contexts

relations for more effective recommendation. The architec-
ture of proposed HERS model is illustrated in Figure[I]
Letw and U = {uy,uz, - ,up} denote a user and the
whole user set. Ry, denotes the user-user relation. Let ¢ and
I = {il, g, ,im} denote an item and the whole item
set. Rz denotes the item-item relation. The user-item inter-

Yu,; could be explicit feedback, e.g., ratings or implicit feed-
back, e.g., clicks. Generally, each user-item interaction y,, ;
is not only decided by user v and item ¢ but also other users
and items in the influential context (Cao 2016). Hence, we
formally define a user’s and an item’s influential contexts to
model the user-item interactions.

Definition 1. User Influential Context (UIC): Given a tar-
get user u, the UIC denotes C,, = {U,, R}, where U, =
{u,US} consists of target user v and all influential users rel-
evant to u, R, denotes the user relationships over U,,.

Definition 2. Item Influential Context (IIC): Given a target
item 4, the IIC denotes C; = {Z;, R;}, where Z; = {i,Zf}
consists of target item ¢ and all influential items relevant to
i, R; denotes all the item relationships over Z;.

Interaction Score Decomposition: Each user-item inter-
action y,, ; can be measured by a score function s in terms
of the UIC C,, and the IIC C;; formally, s : s(Cy,Cs, Yu,i) —
8(c..,c;)- According to Definitions|I|and [2} the overall inter-
action score s¢, ¢,) can be decomposed into four scores:

8(Cu,C) = MS(u,iy t A28 (0, 1oy HA3S (e iy FAas e ey (1)

where s, ;) scores user u’s preference on item 7; S (u,T¢)
scores u’s preference on influential items Zf; s(c ;) scores
relevant users’ preference on ¢, and s(y¢ z¢) scores the sub-
sidiary preference between influential users and influential
items. A1, A2, A3, A4 are the scale parameters for weighing
these scores.

Model Architecture

The architecture of HERS with the user’s and item’s in-
fluential contexts is illustrated in Figure [2| which consists

of five components: User Representer Ey;, UIC Aggregator

Ay, Item Representer E7, [IC Aggregator A; and user-item

interaction scorer Syy. Given a target user u; and the cor-

responding UIC C,,, a target item i, and the corresponding

1IC Cz -

e User Representer Fy: it maps target user u; and its influ-
ential users in UIC to the corresponding user embeddings,
ie., Ey(Uy,) — &, where &, = {et,e1,---ep}.

e [tem Representer Ej: it maps target item ¢; and its influ-
ential items in IIC to the corresponding item embeddings,
ie., EI(Izt) — git where git = {Vt, Vi, VN}.

e UIC Aggregator Ay: it learns a representation r? for the
influential context C,,,, namely influential context embed-
ding (ICE). Formally, we have Ay (Cy,, Ey,) — 1Y

e IIC Aggregator Aj: it learns i;’s ICE by aggregatmg the
influential context C;,, that is, A7(C;,, &;,) + rt.

e User-item Interaction Scorer Sy it learns to score the
interaction strength between the target user-item pair
{ug,i¢) in terms of the user ICE r¥ and the item ICE r/,
namely Syr(r¥, rf, Yue,ie) > S(ca,cy) (cf. Eq..

This architecture can be implemented w.r.t. many concrete

methods, e.g., a mixture model. In this paper, we implement

it w.r.t. neural networks which have been proved mostly ef-
fective and efficient in recent years.

Neural ICAU-based HERS Model

In this section, we present the details of a neural model to
implement the HERS architecture illustrated in Figure [2]
Specially, we design the neural ICAUs to learn ICEs as the
core component of this HERS model.

Influential-context Aggregation Unit

The ICAUs aim to aggregate the user embeddings &,, or
the item embeddings &;, in a context into an ICE accordlng
to the strength of influence from each user or item. Figure
B] demonstrates an ICAU for aggregating user embeddings
Eu,, which consists of a two-stage aggregation: S1 and S2.

S1: This stage outputs the subsidiary influence embed-
ding c¢; through an aggregation function h(-) over the influ-
ential users’ embeddings:

{al,"'aK}:a(el,"'eK) 2)
c; = h(er, - exl|ay, - ak). 3)
where a; denotes the influential strength modeled by a func-

tion a(-).

S2: This stage generates the ICE by aggregating the sub-
sidiary influence context embedding c; and the target em-
bedding e; through a gate function f(+):

g = flcs,er) €]
re=gc; + (1 —g)e (5)

In ICAU, h and f could be any linear or non-linear func-
tions. In this work, we implement h by multilayer neural net-
works in terms of the attention mechanism. And f is imple-
mented with a gate neural network. Note that the ICAUs can
be used in cascade to aggregate higher order ICEs, which is
presented in the next subsection.
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Figure 3: Influential-Context Aggregation Unit (ICAU): A
two-stage aggregation model to construct ICE

User’s Influential Context Embedding

Given a user influential context C,,, = {U,,, Ry, } (cf. Def-
inition , U, consists of the target user u; and her/his
first-order influential neighbors {u¢ m }1<m<ns, and each
Ug,m s neighbors {uy m, k }1<k<k,,» 1-€., second-order influ-
ential neighbors of u;, according to the relationships R, .

To learn the ICE from the UIC C,,, we first employ the
User Representer Ey; to extract the user embeddings for
all users in U,,,. The embedding for a first-order neighbor
Uy,m 18 denoted as ey ,,, and the embedding for a second-
order neighbor .,  is denoted as e ,, . To generate the
ICE for C,, , we construct an ICAU-based two-level tree-like
model as the UIC Aggregator Ay to recursively embed both
second-order and first-order neighbors’ influences. Firstly,
the second level ICAUs are used to generate the ICE ry ,,
w.r.t. each first-order neighbor w; ,,. Then, the first level
ICAU recursively generates the target ICE r¥ by aggregat-
ing these first-order ICEs {r, ,, }. More details are presented
as follows.

The Second Level ICAUs Taking a first-order influential
neighbor u; ., of target user u, as an example, we present
how to implement an ICAU with neural networks for gener-
ating the ICE ry ,,, W.r.t. u ,,, in two stages.

S1: We adopt the attention mechanism to model the influ-
ential strength for each neighbor w; , 1 of u ,,. Specifically,
we construct a three-layer attention neural network to weight
the influence according to the user embedding e; ,, . First,
€ m,k 1s projected into hidden units by a tanh layer to cap-
ture nonlinear interaction:

hy . = tanh(W e, 1 + b) (6)

where the weight matrix W) € REXL and we omit the
bias term b in the following equations for concision.

Then, the normalized influence for each neighbor is
scored by the softmax(zy) = e®* /3, ®/ function:

agm,k = softmax (isrg (W(Q)ht,m,;g)) @)

where the weight matrix W(?) € R'*L and isry is an in-
verse square root unit which is defined as follows:
x

iSTQ (Z‘) = \/ﬁ (8)

where 6 is the parameter which decides the range of function
isrg(-). A large § makes the upper bound and lower bound
close to 0; as a result, the softmax tends to output uniform
weights. On the contrary, the softmax tends to output a sin-
gle large weight with a small 6.

Further, the subsidiary influence embedding c;,, is
aggregated from the influential neighbors’ embeddings
{€t,m,x } according to their influence strengths {agm’ s

K"TL U
Ct.m = E b1 atvm,,ket,m,,k (9)

S2: The ICE ry ,, w.r.t. the first-order user w; ,, is calcu-
lated as follows:

r'tm = gt mCt,m + (]- - gt,m)et,m (10)

where g measures the influence strength from the second-
order neighbors. The influential gate g is modeled by a gate
neural network:

gt,m = U<i5T0 (W(s) tanh (W(4)ct,m —+ W(S)etﬂn))>
(11)
where o(z) = 1/(1 + e ?), WO WO ¢ REXE and
W(S) c RlXL.

The First Level ICAU When we obtain the ICEs {r; ,,}
w.r.t. all first-order influential neighbors, another ICAU at
the first level is used to learn the target ICE:

M
U E U
c; = S Oét,,m’rt’m (12)

where agm denotes the influence strength w.r.t. the first-
order ICE r; ,,, which is calculated by another three-layer
attention network with the same form as Egs. [6and[7] Then,
we get the ICE r! w.r.t. the target user u;:

r =g/cy +(1—g)e (13)
where gY is learned by a gate neural network which has the
same structure with Eq.

Item’s Influential Context Embedding

Given an IIC C; = {Z;, R;}, R; is often built with the item
relevance. Different from the indirect influence in user-user
relation modeling, a user normally only consider those items
directly relevant to the target item when they make a choice.
Therefore, we only consider the first-order influential neigh-
bors of a target item for modeling IIC. Given {i; }1<n<n
w.r.t. target item ¢, their corresponding embeddings v; and
{Vt,n}lgng v are retrieved by Item Representer E/7. As a re-
sult, we use an ICAU to learn the item ICE. The subsidiary
influence embedding ¢! is calculated as:

N

¢f=)  afnVim (14)

where the influential strength atI_’n of v 5, is calculated by a
three-layer attention network as in the UIC Aggregator.

al , = softmax (isre (W tanh (W<7>vt,n))) (15)

where W) ¢ REXL gnd W) ¢ RIXL,



Subsequently, the ICE r! w.r.t. i; is obtained by aggre-
gating the subsidiary influence embedding ¢/ and the target
item embedding v:

vl =glel +(1—gh)v, (16)

where the influential gate g/ is also learned from a three-
layer gate neural network as in Figure 3]

gl = o(isre (W(S) tanh (W(g)ct[ + W(lo)Vt))) (17)
where W®) W) ¢ REXE apnd W(10) ¢ RIXE,

User-item Interaction Ranking

Each user-item connection denotes a user’s selection on an
item. User-item connections can be regarded as one-class
preference data (Hu et al. 2016) which cannot differentiate
user preferences. To handle the one-class problem, we treat
the learning on the user-item interactions as a ranking prob-
lem (Rendle et al. 2009). Given a user u;, we construct a
contrastive item pair to specify the preference order. A pos-
itive item ¢y, is the one which has an observed connection to
uy W.I.t. user-item relations, i.e., a user-selected item, while
a pseudo-negative item i,, refers to the one without a con-
nection to u;. Then, we have the preference order (u;, ip) >
(ut,in). Accordingly, we have Sy, i) > Su,.i,) Where
S(u,,iy denotes the preference score on item 4 by the inner
product of r; and r;:

Sturiy =17 ' 1} (18)

Then, we use the max-margin loss (LeCun et al. 2006) to
optimize the ranking order over pairs:

Liuyiy)=(uesin) = max{0,m — Sty i,y + Stuyiny b (19)

where m = 10 is set as the maximum margin in this paper.
Remark for Scoring Model: if we expand Eq. we
obtain the following form by using Egs. [I3]and [16}

T
Stuniy = (91 ¢t + (1 =g )er) (gici + (1~ gi)ve)
= (1-g/)1 —gl)efvi+g/ (1 —gl)ef Tvi
+ (=g )gie/ el +9ig{ci "] (20)
According to Eq. E], we find that (i) s, ; is modeled by
etTvt; (i1) S (u,T¢) is modeled by e:c,{; (ii1) S(Ue i) is mod-
eled by ¢f T vy, and (iv) s e 7¢) is modeled by ¢’ "¢/ . Cor-
respondingly, A1 = (1 — g/)(1 — g/). A2 = g/ (1 — g{).
A3 = (1 —gP)gl and \y = gYg] are learned to weigh
these scores. Therefore, the above-expanded terms provide

an insight into how the influences in the UIC and the IIC are
embedded in our model to affect the final recommendation.

Training Procedure

For each user selection (u¢,4,), we can construct a triplet
(ut,ip,in) to optimize the ranking 108S Ly, i) (uy,in)-

Then the loss of a mini-batch B for training is given as:

1
Efﬁ >

(ut,ip,in)EB

Ly iy (g in) 1)

Table 1: Statistics of the datasets: Delicious and Lastfm

| Property User-user Item-item  User-Item

@ | #Entity 1,892 17,632 1,892+17,632
S | #Link 25,434 199,827 104,799
5 | #Link/#Entity 13.44 22.66 5.37
2 | Sparsity 0.0071 0.0006 0.0031
= #Entity 1,867 69,226 1,867+69,226
4 | #Link 15,328 682,314 92,834
& | #Link/#Entity ~ 8.24 15.75 3.03

Sparsity 0.0044 0.0001 0.0007

To learn the parameters, we adopt a gradient decent-based
algorithm over 0L/0W w.r.t. each weight matrix W in our
model. We implement our model using Keras (Chollet and
others 2015) with Tensorflow GPU version as backend. We
use Adam (Kingma and Ba 2014) as the gradient optimizer
and the mini-batch size is set to 200. The code is available
at: https://github.com/rainmilk/aaai19hers|

Experiments

In this section, we conduct experiments on two real datasets
to compare the recommendation quality of our approach
with other state-of-the-art recommendation methods.

Data Preparation

Most public datasets for recommendation only involve the
user-item relation, so it is not easy to find a dataset contain-
ing all user-user, user-item and item-item relations. Fortu-
nately, two datasets, Deliciousﬂ and Lastfnﬂ provided by
RecSys Challenge 2011 (Cantador, Brusilovsky, and Kuflik
2011) can satisfy our requirement.

The Delicious dataset contains social networking, book-
marking, and tagging information from the Delicious so-
cial bookmarking system. Contact relationships are identi-
fied between users when they are mutual fans in Delicious,
which is used as the user-user relation. The user-item rela-
tionships are constructed from users and their bookmarked
items. The item-item relationships are built on the common
tags between items. Given a target item, we assign links to
top 10 items which have the most common tags.

The Lastfm dataset contains social networking, tagging,
and music artist information from the Last.fm online music
system. The friendships between users are used as the user-
user relation. The items are artists who are connected with
users if the artists’ musics are listened by these users. The
listening relationships between users and artists are served
as the user-item relation. The item-item relationships are
built through the tags using the same method as Delicious.
The statistics of the datasets are summarized in Table [I]
which contains the number of entities (i.e., users, items), the
number of links (i.e., user-user relationships, item-item re-
lationships, user-item interactions), the number of average
links per entity, and the sparsity for each type of relations.

"http://www.delicious.com
“http://www.last.fm
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Table 2: Item recommendation for test users of Delicious and Lastfm

Delicious

Lastfm

MAP@5 MAP@20 nDCG@5 nDCG@20 | MAP@5 MAP@20 nDCG@5 nDCG@20

BPR-MF 0.4157 0.3225 0.4318
SoRec 0.4174 0.3390 0.4476
Social MF 0.4181 0.3409 0.4520
SoReg 0.4239 0.3444 0.4577
CMF 0.4375 0.3507 0.4739
M 0.4246 0.3363 0.4522
NFM 0.4565 0.3754 0.4924

ICAU-HERS  0.5477 0.4200 0.6064

0.3744 0.5154 0.4586 0.6252 0.6334
0.3965 0.5350 0.4775 0.6412 0.6457
0.4017 0.5489 0.4907 0.6544 0.6575
0.4056 0.5495 0.4878 0.6548 0.6541
0.4158 0.5530 0.4928 0.6549 0.6749
0.3896 0.5366 0.4837 0.6453 0.6723
0.4347 0.5462 0.4885 0.6516 0.6702
0.5273 0.5865 0.5302 0.6913 0.7021

As both datasets are very sparse, the additional information
leveraged from the social networks and the item-item rela-
tions will benefit the recommendation.

Experimental Settings

To evaluate the ranking accuracy, we adopt two metrics:
Mean Average Precision (MAP) and normalized Discounted
Cumulative Gain (nDCG), to measure the quality of prefer-
ence ranking and top-N recommendation.

Comparison Methods: The following representative
methods are selected for comparison:

e BPR-MF (Rendle et al. 2009)): it uses the BPR-based op-
timization on the user-item relation by MF.

e SoRec (Ma et al. 2008): it jointly factorizes the social-
relation matrix and a user-item interaction matrix.

e SoicalMF (Jamali and Ester 2010): it adds regularization
into MF according to social information.

e SoReg (Ma et al. 2011): it leverages social relationships to
regularize the user’s latent factors.

o CMF (Singh and Gordon 2008): it is adopted to co-
factorize the user-user, user-item and item-item relations.

o FM (Rendle 2012): it embeds features into a latent space
and models the interactions between each pair of features.
We integrate user-user, user-item, item-item relations as
the features.

e NFM (He and Chua 2017): a deep neural network-based
FM with multiple hidden layers to learn non-linear inter-
actions.

o [CAU-HERS: ICAU-based HERS proposed in this paper.

Parameter Settings: The lengths of user/item embed-
dings and context embeddings are set to 128. To acceler-
ate the model, we choose top 10 first-order neighbors for
each target user and 10 second-order neighbors for each
first-order neighbor, and 10 neighbors for each item in the
item-item relation ranked by the influence weights, cf. Eq.
The 6 in Eq.[T9]is set to 16.

Recommendation Performance

We construct the testing set by holding out 20% user-item
interactions as the ground truth. For each hold-out test sam-
ple in the testing sets, we randomly draw ten noisy samples

to test whether the testing methods can successfully rank the
true test sample at a top position out of the noisy samples.
The remaining data of the user-item relation is used for train-
ing, together with the user-user and the item-item relations.

Overall Comparison: Table 2| reports MAP and nDCG
at top 5 and 10 over all testing users. Among all methods,
ICAU-HERS achieves the best performance in terms of all
metrics on both datasets. Specifically, ICAU-HERS demon-
strates approximately 20% improvement over the second-
place method NFM on Delicious and 6.1% improvement
over the second-place method CMF on Lastfm in terms of
MAP@5.

Effect of User-user Relation Modeling: BPR-MF more
easily suffers from data sparsity than other comparison
methods, because it cannot borrow information from the so-
cial relationships. As a result, it achieves the worst perfor-
mance. In comparison, other methods benefit from the infor-
mation in the user social network. Especially, ICAU-HERS
outperforms all other methods, which should thank to ICAU
for precisely weighing the influence from different users and
aggregating high-order influences.

Effect of Item-item Relation Modeling: CMF, FM and
NFM consider the item-item relation, which makes the
recommendation more effective than the social relation
only methods. Compared with MF and FM-based methods,
ICAU-HERS demonstrates its superiority on integrating het-
erogeneously relational recommendation data with the influ-
ence aggregation modeling.

Recommendation for Cold-start Users and Items

The cold-start problem is ubiquitous in RSs which can be
categorized into cold-start users and cold-start items. In the
user cold-start problem, for new users, we recommend items
to them. The ranks over the recommended items are re-
garded as the evaluation criteria. In the item cold-start prob-
lem, for new items, we recommend them to different users.
The ranks over the recommended users are used to evalu-
ate the performance. In this section, we show the ICAU-
HERS ability against comparison methods of handling user
and item cold-start problem respectively.

Cold-start Users: To test the recommendation for cold-
start users, we randomly remove 20% users and all their
links from the user-item relation as the training set. BPR-
MF only considers the user-item relation, so it cannot be
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Figure 4: Item recommendation for cold-start users of Deli-
cious and Lastfm
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Figure 5: User recommendation for cold-start items of Deli-
cious and Lastfm

used in the cold-start scenario. The performance compared
with other methods are shown in Figure[d] ICAU-HERS sig-
nificantly outperforms other methods on both datasets. On
Delicious, in terms of MAP @35, the relative improvement of
ICAU-HERS over SoRec, Social MF, SoReg, CMF, FM and
NFM is 42.3%, 32.2%, 29.4%, 21.6%, 19.7% and 12.6% re-
spectively. On Lastfm, in terms of MAP @5, the relative im-
provement of ICAU-HERS over SoRec, Social MF, SoReg,
CMF, FM and NFM is 55.1%, 58.2%, 36.6%, 54.2% 30.7%
and 26.1% respectively. Eq. [20] gives the insight into why
ICAU-HERS can handle this cold-start problem more effec-
tively. This is because the ICEs of users have embedded the
information from their neighbors in the influential context,
even when no historical user selection is observed.

Cold-start Items: To cope with cold-start items, we ran-
domly remove 20% items and all their connected edges from
the user-item relation. For each testing item, we rank the pre-
dictive scores over users. The MAP and nDCG results are
shown in Figure[3] Since SoRec, Social MF and SoReg only
model the user-user relation, they cannot handle cold-start
items. Compared with CMF, FM and NFM, ICAU-HERS
achieves the best performance on both datasets. Note that
ICAU-HERS’s performance on cold-start items is not as sig-
nificant as that for cold-start users. This can be interpreted
that the impact from other users is higher than the impact
from relevant items on user’s item selection. However, the
embedded influential item context can still provide useful
information when no selection is available for a new item.

Figure 6: The visualization of influential contexts of a sam-
pled user selection on an artist in the Lastfm dataset. The
artists in the item network are labeled by their names and
the anonymous users in the user network are labeled with
their IDs. The thickness of edges specifies the significance
of influence.

Visualization and Interpretation

To interpret the influence from influential users and items
when a user makes an item selection, we randomly choose a
user and her/his selection on an artist (User 41 with Raised
Fist) from the LastFM dataset as a case study. We visualize
the influential context w.r.t. the target user and the target item
in Figure [6] by differentiating the influence with different
edge thickness. We can find that the influence from different
users/items is quite different, for example, User 1808 and
User 184 have the common neighbor 1626 but the influence
of User 1626 on User 184 is much larger than that on User
1808. In the item network, we observe similar cases from
the influential context w.r.t. Raised Fist. Therefore, these in-
fluential contexts can provide the interpretation of how the
target users and the target items are influenced by the influ-
ential users and items to form the connection.

Conclusion

We propose a framework for modeling influential contexts
in recommender systems with the user-user, the item-item
and the user-item relations, and further implement a neu-
ral ICAU-based HERS model. In particular, this HERS can
effectively learn the ICEs from user’s and item’s influen-
tial contexts through ICAU. Extensive experiments show
that ICAU-HERS outperforms other state-of-the-art meth-
ods and it is effective for handling the user/item cold-start
and sparsity problems. In addition, we demonstrate the in-
terpretability of ICAU-HERS with a real case study.

ICAU is a general influence embedding model which can
be applied to other domains with heterogeneous networks,
such as user group behavior analysis and biological interac-
tion network, apart from recommender systems. Moreover,
it is easy to incorporate content information of each entity to

better interpret the influence propagation (Jian et al. 2019).
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