
1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 1

Hierarchical Adaptive Pooling by Capturing
High-order Dependency for

Graph Representation Learning
Ning Liu, Songlei Jian†, Dongsheng Li†, Yiming Zhang, Zhiquan Lai and Hongzuo Xu

Abstract—Graph neural networks (GNN) have been proven to be mature enough for handling graph-structured data on node-level
graph representation learning tasks. However, the graph pooling technique for learning expressive graph-level representation is critical
yet still challenging. Existing pooling methods either struggle to capture the local substructure or fail to effectively utilize high-order
dependency, thus diminishing the expression capability. In this paper we propose HAP, a hierarchical graph-level representation
learning framework, which is adaptively sensitive to graph structures, i.e., HAP clusters local substructures incorporating with
high-order dependencies. HAP utilizes a novel cross-level attention mechanism MOA to naturally focus more on close neighborhood
while effectively capture higher-order dependency that may contain crucial information. It also learns a global graph content GCont that
extracts the graph pattern properties to make the pre- and post-coarsening graph content maintain stable, thus providing global
guidance in graph coarsening. This novel innovation also facilitates generalization across graphs with the same form of features.
Extensive experiments on ten datasets show that HAP significantly outperforms twelve popular graph pooling methods on graph
classification task with an maximum accuracy improvement of 20.18%, and exceeds the performance of state-of-the-art graph
matching and graph similarity learning algorithms by over 3.42% and 16%.

Index Terms—Graph Representation Learning, Graph Pooling, Attention Mechanism, Hierarchical Manner.

F

1 INTRODUCTION

A LTHOUGH data that can be represented as grid struc-
ture on Euclidean domains, such as images [1],

video [2], speech [3], and texts [4], has closely connec-
tions with daily life, there is another major category of
Non-Euclidean data, namely graph, which is constructed
by irregularly-arranged nodes and the connection-indicated
edges. Examples include social networks [5], citation net-
works [6], road networks [7] and bioinformatics [8]. Differ-
ent from Euclidean data, convolution and pooling operation
in Convolutional Neural Networks (CNNs) cannot be di-
rectly applied to Non-Euclidean graph-structured data due
to the irregularity and nondeterminacy of the neighborhood
for the central node. Consequently, it is important to learn
a sufficiently expressive representation for graph-structured
data in a reasonable way.

1.1 Motivation

A great deal of research on Graph Neural Networks (GNNs)
has emerged to generalize the great success of convolution
in CNNs to graph-structured data. In GNNs, convolution
operation is evolved into neighborhood message aggrega-
tion of the central node along edges, thus capturing both
node features and graph structural information. Following

• †Corresponding author.
• Ning Liu, Songlei Jian, Dongsheng Li, Yiming Zhang, Zhiquan Lai and

Hongzuo Xu are with the College of Computer, National University of
Defense Technology, China.
E-mail: liuning17a, jiansonglei, dsli, ymzhang, zqlai, xuhongzuo13
@nudt.edu.cn

Manuscript received December 19, 2020; revised April 26, 2021.

this principle, various GNNs have been proposed, such as
GCN [9], [10] and GAT [11]. All of them have achieved sig-
nificant prosperity for graph representation learning tasks,
especially for node-level representation based tasks, includ-
ing node classification [11] and link prediction [12]. How-
ever, as for graph-level representation learning tasks, such
as graph classification [13], [14], graph matching [15] and
graph similarity learning [16], convolution operation alone
is deficient. It is nontrivial to potentially empower GNNs to
produce discriminative graph-level representations with the
help of pooling operation.

To remedy this problem, a few researchers have tried
to further generalize the pooling mechanism from CNNs
to GNNs for graph-level representation learning. Accord-
ingly, it is natural to raise the question: what are the ba-
sic criteria for a high-quality pooling method in GNNs?
Actually, different from the pooling operation in CNNs
for reducing the number of computational parameters and
preserving the invariance, the basic idea of graph pooling
techniques is a node feature aggregator throughout the
entire graph, analogous to the neighborhood aggregator in
graph convolution. Therefore, a good graph pooling method
should encourage graphs with approximate topology and
similar node features to have resemblant representations to
some extent. As a result, the major challenge for a high-
quality pooling mechanism is to define a method which both
effectively maintains pivotal node features and explicitly
captures important structural information. To address this
challenge, previous works have proposed graph pooling
architectures in three ways.

First, universal maximum/average pooling meth-

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 2

Grouping Coarsening Graph Adaptive Coarsening

Legend Group A Group B Group C Information flow

(a) Group pooling (b) HAP

Fig. 1: Differences of receptive field during clustering be-
tween group pooling methods and HAP.

ods [16], [17] are intuitively extended to graph models by
simple element-wise max- or mean-downsampling through
all node features. But such methods have been proved to
ignore feature multiplicities, as well as completely miss
the structural information [18]. Graphs with different cor-
responding structures may get the same representation.

Second, Top-K methods [14], [19], [20], [21], [22] sort
graph nodes in a consistent order with scores on behalf of
the importance, only K nodes with the highest scores are
selected to form the pooled graph. As a result, sets of nodes
except for the top K ones are definitely discarded, which
may involve important features. Meanwhile, very few Top-K
methods utilize the local substructure information for scor-
ing stage, thus resulting a strong possibility of the selected
nodes to be isolated, which may influence the information
propagation in subsequent GNN layers.

Third, advanced graph pooling methods, such as Diff-
Pool [13] and ASAP [23], learn graph representations in a hi-
erarchical grouping manner for capturing more comprehen-
sive local substructures widespread in graphs. They usually
group nodes into smaller clusters with multiple levels and
utilize the final level as the graph representation. However,
grouping operation is usually executed on a fixed 1-hop
neighborhood, thus forcing the information to flow from a
certain neighborhood to the specific coarsened cluster and
neglecting the higher-order dependency among nodes that
may hold significant information, as shown in Fig. 1(a).

1.2 Contributions

To the best of our knowledge, no existing graph pooling
methods adaptively handle the graph local substructures
and high-order dependency, while capturing node features.
And there is a general lack of systematical consideration
to the generalization of graph-level representations affected
by pooling methods. To bridge the above gap, we pro-
pose a novel hierarchical graph pooling framework called
Hierarchical Adaptive Pooing (HAP). The main contributa-
tions can be summarized as follows.

• We intruduce HAP, a supervised hierarchical pool-
ing framework. HAP is capable of preserving node
feature information with adaptive graph structure
sensitivity to both local substructures and high-
order dependency. We provide a more comprehen-
sible framework by offering exhaustive theoretical

analysis for computational complexity, permutation
invariance and the design validity of HAP.

• We propose master-orthogonal attention (MOA),
a novel cross-level attention mechanism specifically
designed for hierarchical graph pooling. MOA can be
leveraged to capture cross-level interactions under
the guidance of graph pattern properties in a more
efficient and effective way. MOA also acts as a soft
substructure extractor. Attention weights for nodes
in the receptive field of a possible local cluster are
much higher than those beyond the receptive field.
This ensures the local-substructure sensitivity and
introduces high-order node features to it.

• We design GCont, an auto-learned global graph con-
tent playing a significant role in MOA. The key inno-
vation is that it incorporates high-level global pattern
properties into pooling method, making MOA sensi-
tive to the latent graph characteristics and produce
a more adequate graph-level representation without
interference of artificial factors. It is relatively stable
during hierarchical pooling and flexible enough to
be learned heuristically. GCont also guarantees the
generalization ability across graphs with the same
form of features.

Extensive experiments demonstrate that (1) HAP sig-
nificantly outperforms twelve graph pooling methods on
seven real-world datasets for graph classification task with
a maximum accuracy improvement of 20.18%; (2) HAP
sharply outperforms the state-of-the-art GMN [15], which is
specifically designed for graph matching task, by boosting
the accuracy up to 3.42%; (3) HAP also achieves a maximum
accuracy gain of 16% comparing with conventional approx-
imate GED algorithms; (4) The graph coarsening module
in HAP dramatically enhances the expression ability of
existing graph pooling architecture for graph-level tasks;
(5) HAP achieves good generalization ability across graphs
with the same form of features; and (6) HAP provides
meaningful visualization of graph-level representations.

2 RELATED WORK

2.1 Supervised Pooling

Supervised pooling methods can be divided into flat pooling
and hierarchical pooling according to whether the graph-
level representation is aggregated in a flat or hierarchical
way with a view to local substructures. Further, flat pooling
methods also cover two families: universal pooling and TopK
pooling, depending on the number of nodes participated in
the final aggregation.

2.1.1 Flat Universal Pooling
Flat universal pooling methods take all the nodes into
consideration. Earlier works directly learn from CNNs to
use mean- or max-pooling method to extract features. Sub-
sequently, Xu et al. [18] find that sum-pooling is much
more powerful because no matter mean or max aggrega-
tor ignores the multiformity of features, thus struggling
in distinguishing graphs with nodes that have repeating
features. Some other works rely on content-based attention
operation. In Gated Graph Neural Networks (GG-NNs) [17],

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 3

the graph-level output is defined by a soft attention mech-
anism for each node to decide which is more relevant to
the graph-level task. Message Passing Neural Networks
(MPNNs) [24] further utilizes Set2Set [19] method to take
the order of nodes into consideration and find the impor-
tance of each node to the graph-level representation through
time-consuming iterative soft-attention. In SimGNN [16]
and UGRAPHEMB [25], a graph content is defined as the
average of node features and the attention is executed
between nodes and it. Obviously, such man-made design
makes the final graph-level representation infinitely close to
the output of mean-pooling method, which is an inefficient
method mentioned above. Besides, to make the graph-level
representation do not depend on the number of nodes
anymore, SAGE [26] utilizes the self-attentive mechanism
to learn node importance and encode it into a unified
graph representation matrix, which is size invariant. Fur-
ther, SOPool [27] not only produces a size-invariant graph
representation matrix but also empowers it by collecting
second-order statistics.

2.1.2 Flat Top-K pooling
Flat Top-K pooling methods score the nodes according to
their importance. Nodes with k-largest scores are preserved
to form the new graph. SortPooling [20] method refers to
the graph label method WL [28], it regards the output
node features of each GCN layer as the continuous WL
colors and sorts the nodes according to the last GCN layer’s
colors. AttPool [29] calculates the scores using a global soft-
attention mechanism. Furthermore, a local attention method
accesses node degree information, which contributes to
keeping a balance between the importance and the dis-
persion. iPool [30] utilizes neighborhood information gain
criterion and only preserves nodes with high information.
gPool [14] develops new ideas that use the projection of
node features to a trainable projection vector as a node
score. SAGPool [21] considers both node features and graph
topology during pooling by taking GCN to calculate atten-
tion scores. However, important information that existed in
the abandoned nodes may be ignored, which should be
explicitly captured in graph pooling. Moreover, no struc-
tural relationships among nodes are acquired during pool-
ing, thus may lead to the unconnectedness of the selected
nodes. To overcome the unconnectedness limitation, HGP-
SL [31] applies a structure learning mechanism with sparse
attention after the selection of TopK nodes. However, its
node selection process suffers from quadratic computational
complexity w.r.t the number of nodes, making HGP-SL
formidable to be generalized to relatively larger graphs.
TAP [32] reduces the time complexity of node selection
by computing similarity scores only between every pair of
connected nodes, which also explicitly encodes the topology
information.

2.1.3 Hierarchical Group Pooling
Due to the fact that local substructures are present in real-
world graphs, hierarchical group pooling methods come
into being. DiffPool [13] is the first differentiable group
pooling approach that learns a dense assignment matrix
to group a 1-hop neighborhood of nodes into clusters in
each hierarchical layer. Subsequently, to address the sparsity

concerns in DiffPool, ASAP is proposed, which combines
both TopK and group methods. Clusters are generated by
aggregating h-hop neighbors of each central node to lever-
age the graph structure, then only top-scoring clusters are
maintained. However, ASAP [23] still cannot guarantee con-
nectivity between the selected clusters. Actually, Mesquita et
al. in [33] indicate that a successful graph pooling method
should not be restricted to nearby nodes. Thus we pro-
pose that high-order structural dependency also contributes
to the construction of a good pooling region. Recently,
HaarPooling [34] introduces a new node grouping strategy
by using the Haar basis. Nevertheless, the construction of
Haar basis totally neglects the graph structural informa-
tion. EigenPooling [35] preserves graph substructure during
node clustering based on the graph Fourier transform, but
the eigen decomposition of the graph Laplacian is time-
consuming.

2.2 Unsupervised Pooling

Loss functions of the aforementioned graph pooling meth-
ods are usually task-based supervised except for DiffPool
that exploits a link prediction loss and enforces nearby
nodes to be pooled together. Recently, there is a grow-
ing interest in unsupervised graph pooling by minimiz-
ing the objective related to graph structure characteristic
or borrowed from graph theory. StructPool [36] employs
conditional random fields (CRFs) to capture high-order
structural relationships by minimizing the Gibbs energy.
MinCutPool [37] continuously relaxes the normalized min-
CUT problem in graph theory and optimizes the cluster as-
signments by minimizing this objective. UGRAPHEMB [25]
utilizes well-accepted and domain-agnostic graph proximity
metrics to provide extra graph-graph proximity guidance
during learning. These novel ideas offer the possibility of
breaking a logjam of current graph pooling research.

Something also worth mentioning is that there is a
common challenge for no matter universal pooling, Top-K
pooling or group pooling, i.e., the element-wise aggregation,
score ranking and cluster assignment learning processes
are merely executed on a single fixed graph, lacking the
inductive capability for entirely new graphs.

3 PRELIMINARIES

3.1 Problem Statement

A graph is represented as G = (V, E ,X), where V =
{vi}i={1,··· ,N} denotes the set of nodes, eij = (vi,vj) ∈ E
is the edge link between node vi and vj , and X =
{x1,x2, · · · ,xN} consists the node labels (no node labels
are provided in some cases). For a graph G with N = |V|
nodes and |E| edges, A ∈ RN×N represents the weighted
adjacency matrix and D ∈ RN×N is a diagonal matrix that
diagonal elements stand for the degree of nodes. H ∈ RN×F

denotes the node feature matrix and hG ∈ RFG is the graph-
level embedding. A label Y may also be attached to the
graph G. Detailed notations are summarized in TABLE 1.
Given a graph dataset, the graph pooling task aims to learn
a mapping f : H → hG from a node feature matrix to a
single graph representation.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 4

TABLE 1: Notations

Notations Definitions or Descriptions

G, G′ the input/coarsened graph
V , E , X the node/edge/node label set of G
N , N ′ the number of nodes of G/G′
A, A′ the adjacent matrix of G/G′
H, H′ the node feature matrix of G/G′
hG the graph-level embedding of G
K the number of graph coarsening modules
C the auto-learned global graph content

C(i,·) row in C refers to a node of the source graph G
C(·,j) column in C refer to a cluster of the target graph G’
M the MOA matrix
F the dimension of input node feature
F ′ the dimension of the output node feature
FG the dimension of the graph level embedding
Y the label of graph G

3.2 Graph Neural Networks
Given node features H = {h1, · · · , hN} and graph structure
A, modern GNNs usually learn useful node representations
in an neighborhood aggregation fashion following general
“message-passing” architecture. The forward process com-
prises two phases, each of which iteratively runs for L time
steps. The message passing phase aggregates information
along edges of the central node from its neighbors. Then the
combination phase updates the representation of the central
node based on the message:

MESSAGE
(l)
V→i = AGGREGATE(l)

(
h
(l−1)
j : (j, i) ∈ E

)
(1)

h
(l)
i = COMBINE(l)

(
h
(l−1)
i ,MESSAGE

(l)
V→i

)
(2)

where h(l)i is the embedding of node i at the l-th iteration
that is initialized as h(0)i = hi, and h(l−1)j is the node feature
vector of node i’s neighbor depending on the adjacency
matrix.

There are multiple selectable implementations of
AGGREGATE(l) (·) and COMBINE(l) (·) adapted suc-
cessfully to different GNN models. Actually, our HAP pool-
ing framework can be consolidated into any GNN models
following the implementation of Equation 1 and Equation 2.
After L times iteration, the representation of the central
node captures the features and structural information within
its L-hop neighborhood.

3.3 Graph Attention
Graph attention mechanism executed between a query q and
a key k allows for allocating diverse alignment scores αij to
different parts of the input, making the model focus on the
most relevant portion. Existing graph attention mechanism
can be divided into node-level attention and master-level atten-
tion according to the attention scope. Specifically, node-level
attention covers both self-attention and cross-attention.

Hard-Self-Attention (HSA) [11] chooses both q and k
from the node features of the single input graph to find the
node dependency on itself:

αij = softmax
(
σ
(
u> [Whi‖Whj]

))
, {hi}i∈V1 , {hj}j∈V1

(3)

where u> and W are trainable parameters, and [·‖·] is a
concatenation operation.

Soft-Self-Attention (SSA) [17] decides which nodes are
relevant to the current graph-level task, so that q is defined
as node feature but no specific key k is provided:

αij = softmax
(
σ
(
u> (Whj)

))
, {hj}j∈V1 (4)

Cross-Attention (CA) [15] captures the differences be-
tween graphs by doing comparisons across the pair of
graphs through choosing q and k from the node features of
pairwise input, thus fusing information from both graphs:

αij = softmax
(
σ
(
u> [Whi‖Whj]

))
, {hi}i∈V1 , {hj}j∈V2

(5)
Master-Attention (MA) [16], [23], [25] concentrates on

the interaction between nodes and the master they belong
to, so that q and k denote node feature and master feature
separately. The master function is generally defined as sum
or max operation of the constituent nodes:

αij = softmax
(
σ
(
u> [W ·Master (hj) ‖Whj]

))
, {hj}j∈V1

(6)
Master =

∑
vj∈ci

(hj) (7)

4 THE PROPOSED METHOD: HAP
In this section, we present HAP, a hierarchical graph pool-
ing framework for graph-level tasks. Its key idea is the
graph coarsening module supported by novel graph pattern
property extracting technique GCont and cross-level atten-
tion mechanism MOA complementing and reinforcing each
other, which not only prompts the GNN model to be sensi-
tive to both local substructures and high-order dependency,
but also empowers it with stronger generalization ability.
Below, we discuss the components of HAP in details.

4.1 Hierarchical Framework

Figure 2 illustrates the overall architecture of the HAP.
Given single, pairwise or triplet input graphs for differenti-
ated graph-level tasks, HAP extracts the node features and
graph structure information for an end-to-end training. The
process can be decomposed into six main steps:

• Input Construction A triplet generator is necessary
for graph similarity learning task.

• Node & Cluster Embedding Subsequently, inputs
are transferred into a node & cluster embedding
module to learn a low-dimensional node vector rep-
resentation for each node or coarsened cluster.

• Graph Coarsening-I Then, a learnable GCont defines
a coarsening preparation step for each graph by
extracting global pattern properties.

• Graph Coarsening-II Furthermore, the MOA mech-
anism derived from the GCont is utilized to obtain
an attention assignment.

• Graph Coarsening-III Afterwards, a cluster forma-
tion function Ω : G ∈ RN×N → G′ ∈ RN ′×N ′

is
learned to compute the cluster representation after
one coarsening.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 5

Coarsened graph Coarsened graph

Coarsening Module Coarsening Module

MOA. Assignment MOA. Assignment

GCont GCont

Single

Pair

Triple

⋮

Graph
Coarsening

Label

Pairwise-
Similarity

Triplet-
Similarity

Model	Optimization
Node & Cluster

Embedding
Input Construction

⋮

Node
Features

Similarity
Measure

or

or

Fig. 2: The overview framework of HAP which conducts graph coarsening with GCont and MOA mechanism, and
compares graphs with the hierarchical similarity measure.

• Model Optimization Executes the loop between
Step-2 and Step-5 until reaching a satisfied graph
scale. HAP then calculates corresponding task loss
with hierarchical graph representation to constantly
optimize all the weight parameters.

4.2 Input Construction

For graph similarity learning task, training and testing data
in the form of triplet is essential to learn the relative simi-
larity among graphs. Based on the best of our knowledge,
there is no ready-to-use graph dataset in triplet form. To
bridge the above gap, we propose a triplet generator in this
subsection.

Given a dataset with single graphs, we denote it as S ,
the similarity between every two graphs Gi and Gj can
be measured under a graph-graph proximity metric f(·),
such as Graph Edit Distance (GED). The smaller the GED,
the more similar the pair. Then the pairwise ground-truth
proximity is denoted as follows:

PGED ←
{
gij
∣∣gij = f(Gi, Gj),∀i, j ∈ |S|

}
(8)

Afterwards, we conduct triplets by fixing the first po-
sition with one graph and randomly choose two disparate
graphs to fill the rest two positions:

T ←
{
γ
∣∣γ = 〈Gi, Gj , Gk〉 ,∀i, j, k ∈ |S|, j 6= k

}
(9)

Synchronously, the ground truth triplet proximity is
generated as follows, in which a positive number for the
element rijk means that graph Gi is much similar to graph
Gk and a negative number means that graph Gi is much
similar to graph Gj :

TGED ←
{
rijk

∣∣rijk = gij − gik,∀i, j, k ∈ |S|, j 6= k
}

(10)

4.3 Node & Cluster Embedding
There is a demand for node or cluster embedding to extract
node or cluster features before going to the next graph
coarsening module. In this paper, we choose to employ a
two-layer GAT [11] or GCN [9] as basic components since
they are all well capable of capturing the local structure
information of a node. Actually, any mainstream GNNs can
also be integrated into the HAP framework. And please note
that the number of GAT or GCN layers depends on the real
application graph data.

Take GAT for example, for the k-th layer in GAT,
it takes graph G’s adjacent matrix Ak and the hidden
representation matrix Hk as input, then formulates the
AGGREGATE(k) (·) phase in a weighted-attention-based
operator:

Hk+1 = σ (AkOattHkWk) (11)

where σ (·) is the non-linear activation function such as
ReLU or Sigmoid, Oatt is a trainable global attention assign-
ment among all nodes, and AkOatt picks one-hop neigh-
borhood attention. Wk is a trainable weight matrix.

Specifically, different from classical GAT or GCN where
graph scale is stable throughout the whole training, HAP
scales down nodes into clusters in the graph coarsening
module before transferring them to the next node & cluster
embedding layer. As a result, Ak changes with the action of
graph coarsening (cf. Eq. 17).

4.4 Graph Coarsening
We achieve graph coarsening through graph global pat-
tern property extracting technique GCont and cross-level
attention mechanism MOA. We show the graph coarsening
module architecture in Fig. 3 and elaborate the details in this
subsection.

4.4.1 Attention Preparation using GCont
Given node features for the source graph, the task of
coarsening process is to learn the cluster assignment ma-
trix through attention mechanism. However, one important
thing ignored by all the group pooling methods is that

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 6

M

Global
Guidance

(a) Attention Preparation (b) Attention Assignment (c) Cluster Formation (d) Soft Sampling

B

C

D

A

E

A′

B′
C′

A′

B′
C′

A′		B′		C′
A
B
C
D
E

GCont

𝑥)
𝑥*
⋮
𝑥,

𝑥)
𝑥*
⋮
𝑥,𝑥)

𝑥*
⋮
𝑥,

𝑥)
𝑥*
⋮
𝑥,

𝑥)
𝑥*
⋮
𝑥,

𝑥)
𝑥*
⋮
𝑥,

𝑥)
𝑥*
⋮
𝑥,

𝑥)
𝑥*
⋮
𝑥,

𝑥)
𝑥*
⋮
𝑥,

𝑥)
𝑥*
⋮
𝑥,

𝑥)
𝑥*
⋮
𝑥,

M./0M.10 M.20

M3/0 M310 M320

M4/0 M410 M420

M5/0M510 M520

M6/0 M610 M620

C

Extracting global pattern properties

MOA

Fig. 3: An illustration of the graph coarsening module. The whole procedure contains four steps: (a) attention preparation by
constructing GCont in which rows and columns stand for nodes from the source graph and the coarsened graph separately;
(b) computing cross-level attention assignment by using MOA; (c) cluster formation by aggregating information from the
source graph; (d) executing soft sampling for edges in the target coarsened graph.

the pre- and post-coarsening graph content should remain
stable without loss of important information. We observe
that both DiffPool [13] and ASAP [23] receive no global
guidance. Hence, we propose GCont, an auto-learned global
graph content sustaining the coarsening process.

As an initial step, we propose using one learnable
linear transformation, parametrized by the weight matrix
T ∈ RF×N ′

to generate GCont. The simple linear trans-
former also combines scalability with the ability to deal
with relatively larger graphs. The global graph content is
converted from the node feature matrix H as:

C = HT (12)

where C ∈ RN×N ′
is the automatically learned global

graph content matrix in which each row C(i,·) ∈ RN ′
is

equivalent to a node of the source graph G and each column
C(·,j) ∈ RN is corresponding to a cluster node of the target
coarsened graph G′.

The GCont bridges the gaps between the source graph
and the target graph and maintains the consistency. On
one hand, the elements in C reflect the interaction be-
tween nodes from source graph and clusters from coarsened
graph. On the other hand, they contain the graph pattern
properties cohered before and after coarsening, thus facili-
tating generalization across graphs with the same form of
features.

4.4.2 Attention Assignment using MOA
HAP intends to achieve graph downsampling through a
cross-level attention-based aggregator for information inter-
action between the source graph and the coarsened target
graph utilizing global graph property guidance. However,
we observe that both HSA and SSA described in Sec. 3.3
only focus on one single graph while CA does not utilize any
global information. Although MA introduces master infor-
mation into the attention process, it is highly affected by the
manmade master function. To that end, we propose a new
variant of attention mechanism called Master-Orthogonal-
Attention (MOA).

Computation of Attention Assignment: The input of
MOA mechanism is a well-learned representation matrix
H = {h1, h2, · · · , hN}, hi ∈ RF , where N is the num-
ber of nodes of the source graph G, and F is the fea-
ture dimension for each node. Then the graph coarsening

module produces a new coarsened graph representation
matrix H′ = {h′1, h′2, · · · , hN ′}, h′i ∈ RF as its output,
where N ′ is the number of clusters of the coarsened graph.
Each cluster will then be regarded as an individual node.
Meanwhile, adjacent matrix A ∈ RN×N will also be up-
dated to A′ ∈ RN ′×N ′

. Please note that the number of
graph coarsening modules and the coarsened graph size N ′

are determined by the real application graph data. In our
experiment, we employ two coarsening modules and we
evaluate it in the experiment.

After having obtained the global graph content matrix,
we can employ an orthogonal1 cross-level attention mecha-
nism between nodes of the source graph and clusters of the
target coarsened graph. The attention matrix M ∈ RN×N ′

is formed with elements as follows:

Mij = σ
(
a>
[
C(i,·)‖C(·,j)

])
(13)

where σ is the LeakyReLU nonlinearity, [·‖·] is a concatena-
tion operation with relaxed dimension of C(·,j) from RN

to RN ′
, and a> ∈ R2N ′

is the trainable shared attentional
parameter with relaxed dimension 2N ′. The reason for the
relaxation will be given below.

M, which is equivalent to a cross-level aggregator, offers
a fully-connected information channel between the source-
graph nodes and the target coarsened-graph clusters, with
each element Mij indicating the importance of node i’s
feature to cluster j. The local substructure is preserved by at-
tention mechanism while the high-order dependency is also
captured through the fully-connected information channel,
thus strengthening feature reservations. We normalize it for
better evaluation:

M =
exp (Mij)∑

k∈N ′ exp (Mik)
. (14)

MOA mechanism synthesizes both self-attention and
cross-attention with master-attention. On one hand, the pro-
posed MOA mechanism calculates the attention coefficients
based on the GCont alone, so we can sort it into self-
attention mechanism. On the other hand, the attention is

1. The terminology “orthogonal” here means rows and columns of a
2D matrix, which is different from the meaning of orthogonal vectors
in a mathematical sense.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 7

predicted between the source graph and the target coars-
ened graph, so we may also classify it as cross-attention
mechanism.

Relaxation of Attentional Parameter: In traditional
graph attention scheme [11], attention coefficients are cal-
culated as follows:

Mij = σ
(
a> [Whi‖Whj]

)
(15)

where σ is the LeakyReLU nonlinearity, a> ∈ R2F ′
is the

trainable shared attentional mechanism, W ∈ RF ′×F is a
weight matrix to produce new node features from cardi-
nality F to F ′, hi ∈ RF and hj ∈ RF are the input node
features, and [·‖·] is a concatenation operation.

Apparently, the trainable shared attentional parameter
a> ∈ R2F ′

in the conventional graph attention mechanism
is irrelevant to the node number of the input graph. How-
ever, in our MOA mechanism, the dimension of C(·,j) ∈ RN

is related to the node number N of the inputted source
graph, making the concatenation

[
C(i,·)‖C(·,j)

]
∈ RN+N ′

.
As a result, the trainable shared attentional mechanism
would be initialized as a ∈ RN+N ′

, which is sensitive to
the node number N of the inputted source graph.

Manifestly,N varies with the input and it is unknown for
parameter initializing stage. Thus, proper relaxation offers
intriguingly good performance when standard techniques
appear to suffer. We loose N to N ′, so that

[
C(i,·)‖C(·,j)

]
∈

R2N ′
. We theoretically analyse the validity of the relaxation

on the prediction outcome in Sec. 5.3.

4.4.3 Cluster Formation
The learning of the global graph content and the cross-level
aggregator constitutes a concordant unity, and complement
and restrict mutually. Subsequently, we generate the coars-
ened graph representation matrix H′ ∈ RN ′×F and update
the adjacent matrix A′ ∈ RN ′×N ′

:

H′ = Aggregate (H) = M>H, (16)

A′ = M>AM. (17)

4.4.4 Soft Sampling
According to Lee et al. [21], handling adjacent data with a
sparse matrix in GNN contributes to decreasing the compu-
tational complexity fromO(|V|2) toO(|E|) and also reduces
space complexity. However, the adjacent matrix A′ turns
to be a dense one from a sparse assignment. That said,
the structure of the source graph G is refined to a fully-
connected downsampled one. Proper edge sampling will
lead to saving both time and storage without a dramatic
loss of accuracy. As a workaround, we adopt the Gumbel-
SoftMax [38] to achieve soft sampling for neighborhood
relationship, thus decreasing edge density for the sampled
adjacent matrix Ã′:

Ã′ij =
exp ((logAij + gij) /τ)∑N ′

k=1 exp ((logAik + gik) /τ)
(18)

where g = −log (−log (u)) and u ∼ Uniform (0, 1). Here,
we set the softmax temperature parameter τ = 0.1 to
make the adjacent matrix distribution close to one-hot. This
operation reduces edge density as much as possible but
preserves the connectivity of graphs.

4.5 Model Optimization
The proposed HAP supports three types of input: single
graph G for graph classification, pairwise graphs (G1, G2)
for graph matching, and triplet graphs (G1, G2, G3) for
graph similarity learning. All of the input graphs will be
coarsened to a 1D vector at the final graph embedding layer,
which can be used to compute graph similarity directly.
Meanwhile, as is demonstrated in model structure, HAP
alternates between node embedding and graph coarsening,
thus generating different graph representation matrix Gk

i at
graph coarsening layer k. As a result, we also propose a hi-
erarchical similarity measure by jointly utilizing hierarchical
graph representations.

4.5.1 Prediction
For graph classification tasks with a single input graph G,
the final graph representation G is directed fed into two
fully-connected layers with a softmax (·) activation on the
output to get the predicted label Ŷ . Then we optimize the
model with a standard cross-entropy on the graph that has
ground truth labels Y . The fully-connected layers and the
objective function can be represented separately as follows:{

f1 = σ (W1G + b1)
f2 = σ (W2f1 + b2)

(19)

Lsingle = −
∑
g∈B

c∑
m=1

Y g
mlogŶ

g
m (20)

where Wi and bi represent weights and biases in the i-th
fully-connected layer respectively for i ∈ {1, 2}. σ is the
adopted ReLU and Softmax activation function for f1 and
f2 separately. B is the training set of single graphs and c
denotes the number of classes.

For graph matching tasks with pairwise input graphs
(G1, G2), pairs are labeled with true or false representing
similar or dissimilar respectively. We optimize the nor-
malization function to push the model to convert graph
distances to similarity scores with distribution s ∈ (0, 1):

sk(G1,G2)
= exp(−scale× dk(G1,G2)

) (21)

where scale ∈ (−∞, 0) denotes a softmax parameter sen-
sitive to different range of distances and is determined by
the real application graph data. Basically, we set it to 0.5.
dk(G1,G2)

represents graph distances of graph pair (G1, G2)
at coarsen level k ∈ K, and here we use Euclidean distance.
Then the model is optimized by hierarchical cross-entropy
function as follows:

Lpair = − 1

K |P|
∑
k∈K

∑
(G1,G2)∈P

Yplog
(
sk(G1,G2)

)
(22)

where P is the training set of pairwise graphs. Yp ∈ {0, 1}
is the label for this pair.

For graph similarity learning tasks with triplet in-
put graphs (G1, G2, G3), hierarchical Mean Squared Error
(MSE) loss function is employed as follows:

Ltriple =
1

K |T |
∑
k∈K

∑
t∈T

((
d(G1,G2) − d(G1,G3)

)
− TGED

)
(23)

where T is the training set of triplet graphs, TGED denotes
ground truth triplet proximity defined by relative Graph
Edit Distance (GED) at Sec. 4.2.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 8

4.5.2 Hierarchical Prediction
As shown in Fig. 2, we adopt a hierarchical prediction strat-
egy to further facilitate the training process and fully utilize
the hierarchical intermediate features of coarsened graphs.
The outputs of every coarsening process are summarized
as the intermediate graph feature, which will be fed into
the learning module for graph matching or graph similarity
learning.

5 THEORETICAL ANALYSIS

5.1 Computational Complexity Analysis
In the following, we theoretically analysis the computational
complexity of the proposed HAP and show the superiority
of the proposed graph coarsening module.
CLAIM 1 (Time Complexity). The time complexity of the

proposed HAP with K graph coarsening modules in
dowmsampling ratio r is approximately O(N2), where
N is the number of nodes of the original input graph.

PROOF 1. The time complexity of HAP involves three
parts corresponding to the three stages of GNN-based
graph-level representation learning models: (1) node
embedding; (2) graph coarsening; and (3) learning. The
time complexity of node embedding stage is O(NFF ′+
|E|F ′) [11], where F ′ is the dimension of output node
features. After that, to downsample node number in the
k-th graph coarsening module, where k ∈ {1, 2, · · · ,K},
it requires O(rk−1N · rkN). Let’s suppose r remains
constant among all the coarsening modules. Then the
time complexity for all the K graph coarsening modules
is O(rN2 + r3N2 + · · ·+ r2K−1N2). Due to the fact that
r is less than 1, r3 + · · · + r2K−1 is a couple of orders
of magnitude smaller than r. So the time complexity of
graph coarsening stage is roughly equivalent toO(rN2).
Eventually, for the learning stage, the time complexity
is O(F 2

G), where FG is the dimension of the graph
level embedding for the input graph G. Therefore, the
overall computational complexity of the proposed HAP
framework isO(rN2+NFF ′+|E|F ′+F 2

G) ≈ O(rN2) ≈
O(N2).

Specifically, when a proper coarsening ratio r is chosen
where rN � N (e.g., r = 0.05 and N = 100), the actual
execution time of the proposed HAP will become almost
linear to N .

5.2 Permutation Invariance
Graph pooling methods need to be permutation invariant
since they should guarantee that the graph-level represen-
tation does not vary with the input order of node-level rep-
resentations. As for the proposed graph coarsening module,
we proof that it is graph permutation invariant.
DEFINITION 1 (Permutation matrix). Pn ∈ {0, 1}n×n is

a permutation matrix of size n iff
∑

i Pi,j = 1 ∀j and∑
j Pi,j = 1 ∀i.

CLAIM 2 (Permutation invariance). Let Pn ∈ {0, 1}n×n
be any permutation matrix, G = (A,X) be any undi-
rected graph, a function f (A,X) be a pooling operation
depending on graph G, graph permutation is defined

as f (A,X) = f
(
PnAP>n ,PnX

)
. The proposed graph

coarsening module is graph permutation invariant.

PROOF 2. M is computed by an attention mechanism be-
tween source nodes and target coarsened clusters. Since
the attention function are operated between node set and
cluster set, the order of nodes or clusters has no effect to
the result, we have:

M→ PnMP>n (24)

Since A′ = M>AM and any permutation matrix is
orthogonal, applying P>nPn = I to it, we get:

A′ → PnA
′P>n (25)

Since X′ = E>X, applying P>nPn = I to it, we get:

X′ → PnX
′ (26)

As a result, f (A,X) → f
(
PAP>,PX

)
, HAP is graph

invariant.

5.3 Validity of Relaxation for Attentional Parameter

In Sec. 4.4.2, we conduct a relaxation operation ψ : a ∈
RN+N ′ → a ∈ R2N ′

for the attentional parameter. Sub-
stantially, the relaxation is applied to the column dimension
of GCont C during concatenation. A natural question is
that whether the relaxation affects the accuracy of attention
coefficients, which may directly lead to neglecting important
information during cross-level aggregation. We now theo-
retically analyze this question.

DEFINITION 2 (LeakyReLU). LeakyReLU is a monotone
increasing activation function:

ϕ(x) =

{
x x ≥ 0
x
a x < 0,

where a ∈ (1,+∞) (27)

CLAIM 3. Let N >N ′, Ci ∈ RN ′
, Cj ∈ RN and a ∈ RN+N ′

be vectors before relaxation, let C′j ∈ RN ′
and a′ ∈

R2N ′
be vectors after relaxation, let [·‖·] be concatena-

tion operation, and LeakyReLU be a nonlinearity. Then
LeakyReLU

(
a>[Ci‖Cj]

)
= LeakyReLU

(
a′>[Ci‖C′j]

)
.

PROOF 3. The essence of a>[Ci‖Cj] is a similarity com-
parison between vector Ci ∈ RN ′

and vector Cj ∈ RN .
Due to the reason that vectors with different dimensions
are non-comparable, the lacking dimension needs to be
padded with zero. So that:

Ci = (c1, · · · , cN ′)→ C′i =

c1, · · · , cN ′ , 0, 0, · · · , 0︸ ︷︷ ︸
N−N ′

(28)

While do comparison between Ci and C′j , we can also
pad them as follows:

Ci = (c1, · · · , cN ′)→ C′i =

c1, · · · , cN ′ , 0, 0, · · · , 0︸ ︷︷ ︸
N−N ′

(29)

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 9

C′j = (c1, · · · , cN ′)→ Ĉj =

c1, · · · , cN ′ , 0, 0, · · · , 0︸ ︷︷ ︸
N−N ′

(30)

Hence, a>[Ci‖Cj] = a′
>

[Ci‖C′j]. Based on
known conditions that LeakyReLU is monotonically
increasing, so that LeakyReLU

(
a>[Ci‖Cj]

)
=

LeakyReLU
(
a′>[Ci‖C′j]

)
.

As a result, the relaxation for attentional parameter has
no negative effects for the attention computation and feature
extraction.

6 EXPERIMENTS AND EVALUATION

We evaluate HAP against a number of state-of-the-art meth-
ods to answer the following questions:

Q1: How does HAP compare with other baselines when
evaluated with downstream tasks including graph clas-
sification, graph matching and graph similarity learning?
(Sec. 6.2, Sec. 6.3, Sec. 6.4)

Q2: How dose the original HAP compare with ablated
ones with graph coarsening module replaced by other state-
of-the-art pooling algorithms? (Sec. 6.5.1)

Q3: How does the number of the graph coarsening
modules influence the quality of graph-level representations
generated by HAP? (Sec. 6.5.2)

Q4: Do key designs of HAP contribute to better general-
ization performance? (Sec. 6.5.3)

TABLE 2: Statistics of datasets. IMDB-B, IMDB-M, COLLAB,
MUTAG, PROTEINS, PTC and HIV are for graph classifica-
tion; AIDS and LINUX are for graph similarity learning; and
the Synthetic data is for graph classification.

Dataset #Graphs #Triples #Pairs Max.V Avg.V #Classes

IMDB-B 1000 - - 136 20 2
IMDB-M 1500 - - 89 13 3
COLLAB 5000 - - 492 75 3
MUTAG 188 - - 28 18 2
PROTEINS 1113 - - 620 39 2
PTC 344 - - 109 26 2
HIV 41127 - - 222 26 2
AIDS - 171900 - 10 9 -
LINUX - 409600 - 10 8 -
Synthetic data - - 8750 300 106 2

6.1 Experimental Setup
6.1.1 Datasets
We perform experiments on nine real-world datasets and
one synthetic dataset varying with tasks. The graph statistics
are summarized in TABLE 2.

For graph classification, we use seven real-world bench-
marks from [39] and [40], including three social network
datasets (IMDB-BINARY, IMDB-MULTI, COLLAB) and four
bioinformatics datasets (MUTAG, PROTEINS, PTC, HIV).
IMDB-BINARY is a movie collaboration dataset and IMDB-
MULTI is a multi-class version of IMDB-BINARY. COLLAB
is a scientific collaboration dataset labeled by the corre-
sponding field. MUTAG is a nitro compounds dataset where
classes indicate whether the compound has a mutagenic
effect on a bacterium. PROTEINS is a protein dataset where
graphs are classified as enzyme or non-enzyme. PTC is

a chemical compounds dataset where classes indicate car-
cinogenicity for male and female rats. HIV is a molecular
property prediction dataset to indicate whether a molecule
inhibits HIV virus replication or not.

Evaluating graph matching task requires benchmark
datasets with ground-truth labels (true for matching and
false for unmatched). To the best of our knowledge, no
public-available real-world dataset holds such ground-truth
labels. To fill this gap, we conduct a synthetic dataset, a
collection of labeled graph pair (G1, G2) with edge proba-
bility p ∈ [0.2, 0.5] generated by the VF2 graph matching
library [41]. Given a graph G, a positive sample is the
maximum connected subgraph randomly extracted with 1
to 3 nodes less than G. And a negative sample is created
by randomly adding 3 to 7 nodes with the same edge
probability.

For graph similarity learning, we use two small graph
datasets within 10 nodes. AIDS [42] provides antivirus
chemical compounds. LINUX [43] consists of Program De-
pendence Graphs (PDG) generated from Linux kernel. Each
graph expresses dependencies between statements in a pro-
gram.

6.1.2 Baselines
We compare HAP with three kinds of baselines:

Graph pooling baseline: For comparison of total
pooling, we choose GCN-concat (concatenation of GCN-
based node-level representations), SumPool [44], MeanPool,
MeanAttPool [16], and Set2Set [19]. For TopK pooling, we
use SortPooling [20], AttPool [29], gPool [14] and SAG-
Pool [21]. For group pooling, we compare with DiffPool [13]
and ASAP [23]. We also conduct evaluation on an unsuper-
vised method StructPool [36].

Graph matching baseline: We focus on the Graph
Matching Network (GMN) [15] specifically designed for
pairwise graph similarity learning.

Graph similarity learning baseline: There are two cat-
egories of graph similarity learning baselines. Due to the
reason that the ground-truth triplet proximity for graph sim-
ilarity learning task is calculated by conventional rigorous
GED algorithm, the first type is referred to as conventional
approximate GED algorithms for comparison, including
Beam search [45], VJ [46] and Hungarian [47] algorithm.
The other type includes SimGNN [16] and GMN, which are
GNN-based models.

6.1.3 Parameter Settings
For the basic model structure of HAP, we set two node
& cluster embedding layers before every following graph
coarsening module, and a total of two coarsening modules
are needed. Adma optimizer is used with initial learning
rate 0.01 for graph classification datasets, 0.0015 for AIDS,
0.0001 for LINUX and synthetic data. For social network
datasets IMDB and COLLAB with no informative node
features, we use one-hot encoding of node degrees as initial
node input. Similarly, we adopt one-hot encoding of node
labels for AIDS dataset, while others are initialized iden-
tically. For graph classification and other tasks, the initial
dimension is 64 and 128, respectively. All of the datasets
for graph matching and similarity learning are randomly
partitioned into 8:1:1 for training/validation/testing. For all

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 10

TABLE 3: Graph classification accuracy and AUC score in percent. Four horizontal lines are used to split the results of
universal pooling, TopK pooling, group pooling and unsupervised pooling.

Model
IMDB-B IMDB-M COLLAB MUTAG PROTEINS PTC HIV

acc auc acc auc acc auc acc auc acc auc acc auc acc auc

GCN-concat 62.00±4.02 60.56±3.68 49.13±4.04 - 68.19±1.09 - 84.44±7.37 82.88±9.19 72.17±5.69 70.81±3.57 69.71±8.73 67.72±6.08 71.25±1.68 71.19±1.87
SumPool 78.00±3.71 77.90±3.74 52.87±1.79 - 73.26±5.78 - 91.11±6.19 92.01±6.39 78.38±4.65 77.21±4.31 73.82±4.25 72.36±5.04 71.79±2.15 71.46±2.33
MeanPool 72.24±4.35 72.94±2.59 48.11±2.86 - 76.72±2.94 - 85.00±7.05 83.86±8.10 73.38±3.75 71.74±3.41 70.59±3.94 71.41±4.97 63.69±0.73 64.08±1.20
MeanAttPool 77.80±3.28 77.69±3.36 52.40±2.53 - 76.94±1.69 - 91.67±7.14 90.44±8.69 74.09±3.89 74.69±4.07 74.41±6.45 72.33±5.27 72.38±0.60 72.03±0.26
Set2Set 60.20±8.21 59.19±8.39 43.13±4.31 - 68.17±5.82 - 91.11±6.67 88.86±9.39 70.72±9.31 69.43±9.49 68.82±4.96 65.05±5.96 70.71±2.20 70.47±2.12
SortPooling 69.60±3.14 76.45±3.42 48.53±4.27 - 74.44±2.18 - 83.33±5.56 84.92±9.33 74.05±4.41 72.72±4.75 56.47±7.53 59.56±9.42 69.61±3.02 50.29±3.98
Attpool-global 67.70±4.10 71.56±4.52 50.88±3.42 - 78.58±1.29 - 91.11±5.09 90.75±8.29 74.82±3.78 74.85±3.94 68.34±6.40 72.99±6.40 73.50±1.71 60.46±1.78
Attpool-local 66.10±1.37 66.53±3.34 51.93±3.81 - 79.90±1.10 - 81.11±7.11 84.13±9.45 74.64±3.74 74.56±2.48 70.00±5.55 72.56±4.23 75.24±1.11 68.12±2.46
gPool 77.60±2.27 77.60±2.27 54.80±2.74 - 81.34±0.91 - 87.72±7.19 85.22±8.64 78.52±4.18 77.23±4.13 73.15±3.91 72.42±3.87 71.99±1.61 72.26±1.82
SAGPool 77.10±3.18 76.71±2.79 51.93±3.06 - 74.44±3.64 - 77.78±7.45 68.74±8.59 74.33±3.89 72.15±4.04 65.88±4.20 61.65±5.22 73.43±2.28 73.31±2.29
DiffPool 74.80±3.22 74.99±3.09 50.93±4.05 - 72.15±1.46 - 90.00±6.94 89.53±6.63 71.18±6.14 70.84±4.44 70.03±5.99 66.69±5.82 74.29±0.51 74.16±0.56
ASAP 73.70±3.95 73.97±3.94 48.53±3.54 - 79.68±2.47 - 73.70±3.18 68.26±5.96 68.47±4.17 63.92±6.06 56.74±2.24 54.36±1.37 70.50±7.51 70.11±7.69
StructPool 73.90±3.24 74.60±4.82 50.93±4.02 - 70.20±1.99 - 88.33±6.78 92.69±6.49 79.01±4.36 77.99±4.45 69.12±4.21 69.48±9.30 72.37±2.14 52.41±1.14
HAP (ours) 78.80±2.68 78.85±2.69 55.53±2.47 - 77.27±2.10 - 93.88±5.80 94.60±5.29 79.28±4.37 78.29±4.95 74.71±2.35 73.84±2.13 75.95±1.18 75.71±1.33

the baseline methods, we conduct experiments under the
default settings reported in the original work.

6.1.4 Evaluation Metrics

For graph classification task, we perform the same 10-
fold cross-validation as SAGPool [21] on all of the seven
datasets, then report the average accuracy and AUC score
with standard deviation. For graph matching and similarity
learning tasks, average accuracy and standard deviation is
reported for 10 random seeds.

6.2 Task1: Graph Classification

We evaluate HAP on seven benchmark graph classifica-
tion datasets and compare it with several state-of-the-art
approaches belonging to different pooling categories re-
spectively. For AttPool, we try different attention functions
(global attention and local attention) to obtain the graph-
level representations. For HAP, we try GAT and GCN for
node & cluster embedding operation and report the better
accuracy. Table 3 shows the 10-fold cross-validation results
in terms of the mean and standard variation of classification
accuracy and AUC score. The best performance on each
dataset is marked in bold. We can observe that HAP obtains
the best performance on six out of seven datasets with an
average improvement of 6.07% for accuracy and 7.3% for
AUC score.

Of all the graph pooling methods, universal pooling
approaches are the most straightforward ones but achieve
considerable effect, especially the SumPool which is consis-
tent in underlying concept with our HAP. Intuitively, higher
the quality of graph-level representations, better the graph
classification result. The element-wise sum aggregator in
SumPool tends to capture all node features in consideration
of higher-order node dependency, but the generated graph-
level representations fail to obtain sufficient quality, i.e.,
the quality of graph-level representations is not positively
associated with how much node features are acquired. Irrel-
evant features that may interfere the results are obtained
without reducing the weights, thus the final graph-level
representations mixed with excessive irrelevant information
is detrimental to the graph classification accuracy.

TopK pooling approaches produce score-based repre-
sentations that drop nodes from the original graph with
lower scores. As a result, potentially valuable information
attached with these nodes and the related substructures
may be ignored. From TABLE 3, the performance of TopK
pooling approaches are universally inferior than other meth-
ods that capture more features or structural information.
More damaging, SortPool and AttPool-global fail to return
a result within 72 hours in practical execution. But there
is an exception to the rule: gPool, with consistently bet-
ter performance than other methods, even excels HAP on
COLLAB. gPool computes scores by the multiplication of
node feature matrix and a trainable projection vector, so
that feature of each node is covered in the estimated scalar
projection values by assigning with different weights. This
crucial ingredient leads to the outstanding performance. As
for the incredible performance on COLLAB, it might be due
to the nature of COLLAB dataset. COLLAB covers scientific
collaboration between authors. Nodes represent authors and
edges indicate co-author relationship between authors. The
classification task of each graph is to estimate the field the
corresponding researcher belongs to. In this situation, it can
be distinguished easily by the authors with Top-K quantity
of papers that may be domain experts, while other unknown
authors are actually noisy information. Nevertheless, our
HAP still has advantages except for such exceptional cir-
cumstances.

Visualization: To further conceptualize the effectiveness
of the learned graph-level representations, we provide a
visualization of the t-SNE on PROTEINS and COLLAB
dataset with features extracted by the methods HAP, SAG-
Pool, MeanAttPool and DiffPool (Fig. 4). In each figure,
points of different colors exhibits discernible graph clusters
with different labels in the projected two-dimensional space.
Note that the separability of the cluster border verifies the
discriminative power. We can find that HAP performing
consistently with MeanAttPool on PROTEINS shows better
discriminability of the two classes than SAGPool and Diff-
Pool. As for COLLAB, HAP is far superior to its competitors
where three classes are clearly separated, all of which are in
accordance with the results suggested in TABLE 3.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 11

DiffPoolHAP (ours) MeanAttPoolSAGPool

(a) PROTEINS

HAP (ours) MeanAttPoolSAGPool DiffPool

(b) COLLAB

Fig. 4: The t-SNE visualization of graph-level representa-
tions from HAP and three baselines on PROTEINS (above)
and COLLAB (below). Different colors indicate graph sam-
ples with different labels.

TABLE 4: Graph matching accuracy in percent varying
with graph size. GMN-HAP is a variant of GMN where
the pooling algorithm in GMN is replaced by the graph
coarsening module of HAP.

Model |V|=20 |V|=30 |V|=40 |V|=50

GMN 95.89±0.70 97.47±0.26 95.91±0.77 98.74±1.09
GMN-HAP 97.70±0.38 98.36±0.52 98.48±0.13 99.07±0.53
HAP (ours) 99.31±0.32 99.41±0.42 98.73±0.76 99.23±0.46

6.3 Task2: Graph Matching
Four synthetic datasets are generated with different data
size |V| ∈ {20, 30, 40, 50} for graph matching task. TABLE4
shows the graph matching results w.r.t. graph size.

GMN, specifically designed for graph matching task,
makes the node embedding phase dependent on the pair
through a cross-graph attention mechanism. However, as
shown in TABLE4, HAP drastically boosts the matching
accuracy up to 3.42% compared to GMN on graph size
|V| = 20. When increasing graph size, HAP remains stable
while GMN decreases gracefully from graph size |V| = 30
to |V| = 40. This shows the key point: basic node embed-
ding models have been perfectly capable of getting high-
quality node-level representations. On the contrary, the core
to enhancing graph matching accuracy is improving the
quality of graph-level representations. After replacing the
basic pooling module in GMN, the performance of GMN-
HAP grows tremendously to be comparable with HAP,
further confirming the strong ability of the proposed graph
coarsening module.

6.4 Task3: Graph Similarity Learning
We show the results of HAP for graph similarity learning
compared with both conventional approximate GED algo-
rithms and GNN-based models on dataset AIDS and LINUX
in Fig. 5. Note that evaluating graph similarity learning
task requires benchmark datasets with ground-truth GEDs
processed by the exact algorithm A*. A recent research [48]
shows that “no currently available algorithm manages to re-
liably compute GED within reasonable time between graphs

0 20 40 60 80
Accuracy (%)

Beam1

Beam80

Hungarian

VJ

SimGNN

GMN

SimGNN-HAP

GMN-HAP

HAP (ours)

M
et

ho
d

65.55

81.35

63.75

64.95

19.75

70.8

22.0

73.65

84.9

83.1

87.0

72.95

68.9

8.77

87.63

9.47

91.01

92.2

AIDS
LINUX

Fig. 5: Graph similarity accuracy in percent. The triplet
similarity based on Beam1, Beam80, Hungarian and VJ is
reflected by whether the relative GED is positive or nega-
tive.

with more than 16 nodes”. And the experiments on A* show
that 10 nodes seem to be reaching the limit of its ability to
deal with the problem. To address the gap, we only accept
benchmark datasets with the max number of nodes no more
than 10 in each graph. Our results demonstrate that HAP is
capable of boosting the accuracy of state-of-the-art methods.

More specifically, for conventional approximate GED
algorithms with high computational complexity, HAP im-
proves accuracy by a relative gain of 16% and 14.21% on
AIDS and LINUX, respectively. In regard to comparing with
GNN-based models, HAP is overwhelming to SimGNN,
which focuses more on optimizing the exact similarity score
between graphs while neglecting the relativity. The result,
in one aspect, reflects that a single-minded pursuit of the
optimization of pairwise absolute similarity is not neces-
sarily favorable to the relative similarity tasks which are
more common in real-world applications to some extent.
Similarly, HAP outperforms GMN by a margin of 14.1% and
4.57% on AIDS and LINUX, respectively. When replacing
pooling methods in SimGNN and GMN with the proposed
graph coarsening module, both of them achieve slight pro-
motion and GMN-HAP obtains comparable accuracy with
HAP. These results indicate that our HAP and coarsening
module are conducive to a high-quality graph-level repre-
sentation.

6.5 Ablation Studies
6.5.1 Comparison of Graph Pooling Mechanisms
To study the effectiveness of our proposed graph coarsening
module, we fix other components of HAP framework, and
replace our coarsening module with other four differen-
tiable graph pooling methods, i.e., MeanPool, MeanAttPool,
SAGPool and DiffPool, referring these variants as HAP-
MeanPool, HAP-MeanAttPool, HAP-SAGPool and HAP-
DiffPool, respectively. The performance of HAP and its four
ablated variants on graph classification, graph matching and
graph similarity learning task is shown in TABLE 5.

We observe that compared with other four ablated vari-
ants whose performance fluctuates wildly among tasks,

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 12

TABLE 5: Ablation study results on graph classification, graph matching and graph similarity learning. HAP-x is a variant
of HAP where the graph coarsening module is replaced by x.

Ablated Model
Graph Classification Graph Matching Graph Similarity Learning

IMDB-B MUTAG PTC HIV
v=20 v=30 v=40 v=50 AIDS LINUX

acc auc acc auc acc auc acc auc

HAP-MeanPool 72.24±4.35 72.94±2.59 85.00±7.05 83.86±8.10 70.59±3.94 71.41±4.97 63.69±0.73 64.08±1.20 53.03±1.99 54.28±1.86 54.68±1.32 58.64±0.53 66.35±2.25 63.45±2.85
HAP-MeanAttPool 77.80±3.28 77.69±3.36 91.67±7.14 90.44±8.69 74.41±6.45 72.33±5.27 72.38±0.60 72.03±0.26 89.08±2.89 83.47±0.90 84.47±1.73 87.81±1.17 76.97±1.34 88.16±0.86
HAP-SAGPool 76.33±1.25 76.79±1.28 73.33±7.37 56.29±8.50 64.12±4.32 60.64±4.52 63.21±5.06 62.99±4.81 60.74±1.11 61.94±1.68 58.22±1.51 58.52±1.36 73.25±1.17 65.34±1.19
HAP-DiffPool 75.75±3.56 75.95±3.73 86.11±6.21 80.50±7.80 67.65±5.50 66.99±5.91 69.40±4.42 69.59±4.48 63.93±1.48 63.14±0.86 65.85±1.63 61.38±0.43 79.52±1.21 90.72±0.59
HAP (ours) 78.80±2.68 78.85±2.69 93.88±5.80 94.60±5.29 74.71±2.35 73.84±2.13 75.95±1.18 75.71±1.33 99.31±0.32 99.41±0.42 98.73±0.76 99.23±0.46 84.90±0.70 92.20±0.91

our HAP achieves superior performances on all of the
ten datasets for the three tasks. We also find that HAP-
MeanPool is competent in graph classification task, but
inferior on graph matching and graph similarity learning
to our method by a margin of 18.55% to 46.28%. This val-
idates that the multiformity features which may be redun-
dant information in single-input graph classification task is
crucial for multiple-input graph-level tasks to do horizon-
tal comparison. On the contrary, HAP-MeanAttPool brings
about performance benefits against other ablated variants.
This indicates that global-wise information aggregation can
be helpful for graph-level representation learning. Further,
with the help of the proposed graph coarsening module, our
HAP achieves adaptive graph structure sensibility based on
a global-wise information aggregation, which utilizes both
local structure and global pattern properties, thus contribut-
ing to a high-quality graph-level representation. Similarly,
when comparing with HAP-DiffPool, a one-hop neighbor-
hood aggregator, HAP can also improve graph-level repre-
sentation quality by joining high-order dependency among
nodes that may hold significant information. Moreover,
the performance comparison between HAP-SAGPool and
HAP reveals that our HAP can indeed retain key graph
information that may be attached to the abandoned nodes.

TABLE 6: The effects of different number of graph coarsen-
ing modules in percent.

Model
Graph Matching Graph Similarity Learning

|V|=20 |V|=30 |V|=40 |V|=50 AIDS LINUX

baseline 53.03±1.99 54.28±1.86 54.68±1.32 58.64±1.32 66.35±2.25 63.45±2.85
coarsen=1 98.48±0.47 97.44±0.60 97.66±0.89 96.82±0.63 81.82±1.42 88.12±3.29
coarsen=2 99.31±0.32 99.41±0.42 98.73±0.76 99.23±0.46 84.90±0.70 92.20±0.91
coarsen=3 97.20±0.32 99.36±0.47 99.23±0.30 99.25±0.14 84.44±0.61 88.89±1.77

6.5.2 Comparison of Different Number of Graph Coarsen-
ing Module

TABLE 6 shows the performance of graph matching and
graph similarity learning by adopting different numbers
of graph coarsening modules in HAP. All experiments are
conducted using HAP-MeanPool as the baseline with a
fixed coarsen ratio for the same dataset. We observe that
replacing the MeanAttPool with our graph coarsening mod-
ule, denoted as Coarsen = 1, improves the performance
by at least 15.47%, which can effectively demonstrate the
significance of the proposed coarsening module. Further-
more, increasing coarsening modules from one to two can
improve the performance by at most 4.08%. Finally, in-
creasing coarsening modules from two to three makes the

performance slightly fluctuate. These results demonstrate
that the proposed graph coarsening module can improve the
performance by coarsening graphs in a properly hierarchical
manner.

Visualization: Fig. 6 visualizes how graph-level repre-
sentations react with different number of graph coarsening
modules in graph classification task. It can be seen that the
challenging classification is progressively corrected with the
number of graph coarsening modules increasing from one
to two, but is easily to be misclassified when there are three
coarsening modules.

Synthesizing the above results, the greater the number
of graph coarsening modules, the more attached parameters
and additional memory usage. To balance the performance
and resource usage, we choose Coarsen = 2 as default
settings.

Coarsen=1 Coarsen=2 Coarsen=3

(a) PROTEINS

Coarsen=1 Coarsen=2 Coarsen=3

(b) COLLAB

Fig. 6: The t-SNE visualization of graph-level representa-
tions of HAP with different number of graph coarsening
modules on PROTEINS (above) and COLLAB (below). Dif-
ferent colors indicate graph samples with different labels.

6.5.3 Comparison of Generalization Performance

While most GNNs are designed to consider the general-
ization ability to unseen nodes, there are few researches in
graph pooling area to address the generalization to unseen
graphs. However, in practical applications such as protein
molecular structure recognition, researchers are often inter-
ested in generalizing the knowledge learned from small-
sized molecules to large-sized molecules with the same form
of structures.

In this subsection, we justify the generalization capa-
bility of the models by training on small-size graphs and
testing on large-sized graphs with the same edge probability
for graph matching task. The results shown in TABLE 7
indicate that only HAP can achieve a natural generalization

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 13

of the small-sized results to the scenarios of large-sized
graphs. This is credited to the key strength of HAP: it can
effectively learn the global graph content that involves high-
level pattern information for the training graph by GCont,
thus preserving the pattern properties that are inherited
between the training and testing graphs. When applying
our graph coarsening module to GMN, GMN-HAP achieves
a significant improvement of the prediction performance by
8.52% and 10.03%, respectively.

TABLE 7: Generalization performance in percent on graph
matching task. Models are trained on graphs with 20 ≤
|V| ≤ 50 and tested on graphs with |V| = 100 or |V| = 200.

Model |V|=100 |V|=200

GMN 85.37±0.85 74.35±1.33
GMN-HAP 93.89±0.44 84.38±0.78
HAP-MeanPool 56.66±0.66 57.27±0.89
HAP-MeanAttPool 83.84±0.30 88.11±0.84
HAP-SAGPool 57.88±0.90 57.89±1.25
HAP-DiffPool 63.86±0.66 59.89±0.60
HAP (ours) 98.16±0.25 97.58±0.79

7 CONCLUSION AND FUTURE WORK

In this paper, we introduce a novel graph pooling frame-
work HAP for hierarchical graph-level representation learn-
ing by adaptively leveraging the graph structures. The
key innovation of HAP is the graph coarsening module,
assisted by novel graph pattern property extracting tech-
nique GCont and cross-level attention mechanism MOA.
HAP clusters local substructures through a newly proposed
cross-level attention mechanism MOA. MOA mechanism
helps it to naturally focus more on close neighborhood
while effectively capture higher-order dependency that may
contain important information. We also propose GCont, an
auto-learned global graph content that sustains the cross-
attention process. HAP leverages GCont to provide global
guidance in graph coarsening. It extracts graph pattern
properties to make the pre- and post-coarsening graph
content maintain stable without loss of significant informa-
tion. The learning of GCont also facilitates generalization
across graphs with the same form of features. Theoretically
analysis and extensive experiments demonstrate that HAP
and the key component graph coarsening module achieve
state-of-the-art performance on four downstream tasks.

HAP shows its potential to improve other graph learning
methods by getting a more informative graph embedding.
Furthermore, there are incredible opportunities for HAP
to be further extended to more complex networks such
as attributed networks and heterogeneous networks which
may be more common in real-world applications.

8 ACKNOWLEDGMENTS

This document is supported by National Natural Science
Foundation of China (No. 62025208, No. 61932001 and
No. 62002371), State Administration of Science Technol-
ogy and Industry for National Defense Foundation(No.
WDZC20205250104) and the National University of Defense
Technology Foundation (No. ZK21-17).

REFERENCES

[1] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond
a gaussian denoiser: Residual learning of deep cnn for image
denoising,” IEEE Transactions on Image Processing, vol. 26, no. 7,
pp. 3142–3155, 2017.

[2] Y. Fan, X. Lu, D. Li, and Y. Liu, “Video-based emotion recognition
using cnn-rnn and c3d hybrid networks,” in Proceedings of the 18th
ACM International Conference on Multimodal Interaction, 2016, pp.
445–450.

[3] D. Palaz, R. Collobert et al., “Analysis of cnn-based speech recog-
nition system using raw speech as input,” Idiap, Tech. Rep., 2015.

[4] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study
of cnn and rnn for natural language processing,” arXiv preprint
arXiv:1702.01923, 2017.

[5] S. A. Myers, A. Sharma, P. Gupta, and J. Lin, “Information network
or social network? the structure of the twitter follow graph,” in
Proceedings of the 23rd International Conference on World Wide Web,
2014, pp. 493–498.

[6] N. Shibata, Y. Kajikawa, and I. Sakata, “Link prediction in citation
networks,” Journal of the American society for information science and
technology, vol. 63, no. 1, pp. 78–85, 2012.

[7] J. Hu, C. Guo, B. Yang, and C. S. Jensen, “Stochastic weight com-
pletion for road networks using graph convolutional networks,” in
2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 2019, pp. 1274–1285.

[8] Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan, and X. Gao, “Deep learning
in bioinformatics: Introduction, application, and perspective in the
big data era,” Methods, vol. 166, pp. 4–21, 2019.

[9] T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv: Learning, 2016.

[10] Y. Zhao, J. Qi, Q. Liu, and R. Zhang, “Wgcn: Graph convolu-
tional networks with weighted structural features,” arXiv preprint
arXiv:2104.14060, 2021.

[11] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

[12] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-
based multi-relational graph convolutional networks,” arXiv
preprint arXiv:1911.03082, 2019.

[13] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable
pooling,” arXiv preprint arXiv:1806.08804, 2018.

[14] H. Gao and S. Ji, “Graph u-nets,” arXiv preprint arXiv:1905.05178,
2019.

[15] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,”
arXiv preprint arXiv:1904.12787, 2019.

[16] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn:
A neural network approach to fast graph similarity computation,”
in Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, 2019, pp. 384–392.

[17] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” arXiv: Learning, 2016.

[18] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[19] O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” arXiv preprint arXiv:1511.06391, 2015.

[20] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end
deep learning architecture for graph classification.” in AAAI,
vol. 18, 2018, pp. 4438–4445.

[21] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in
International Conference on Machine Learning. PMLR, 2019, pp.
3734–3743.

[22] Y. Pang, Y. Zhao, and D. Li, “Graph pooling via coarsened graph
infomax,” arXiv preprint arXiv:2105.01275, 2021.

[23] E. Ranjan, S. Sanyal, and P. P. Talukdar, “Asap: Adaptive structure
aware pooling for learning hierarchical graph representations.” in
AAAI, 2020, pp. 5470–5477.

[24] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings
of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 1263–1272.

[25] Y. Bai, H. Ding, Y. Qiao, A. Marinovic, K. Gu, T. Chen,
Y. Sun, and W. Wang, “Unsupervised inductive graph-level rep-
resentation learning via graph-graph proximity,” arXiv preprint
arXiv:1904.01098, 2019.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3133646, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS OF KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, FEBRUARY 2021 14

[26] J. Li, Y. Rong, H. Cheng, H. Meng, W. Huang, and J. Huang, “Semi-
supervised graph classification: A hierarchical graph perspective,”
in The World Wide Web Conference, 2019, pp. 972–982.

[27] Z. Wang and S. Ji, “Second-order pooling for graph neural net-
works,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2020.

[28] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” Journal
of Machine Learning Research, vol. 12, pp. 2539–2561, 2011.

[29] J. Huang, Z. Li, N. Li, S. Liu, and G. Li, “Attpool: Towards hi-
erarchical feature representation in graph convolutional networks
via attention mechanism,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 6480–6489.

[30] X. Gao, W. Dai, C. Li, H. Xiong, and P. Frossard, “ipool–
information-based pooling in hierarchical graph neural net-
works,” IEEE Transactions on Neural Networks and Learning Systems,
2021.

[31] Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Yu, and C. Wang, “Hi-
erarchical graph pooling with structure learning,” arXiv preprint
arXiv:1911.05954, 2019.

[32] H. Gao, Y. Liu, and S. Ji, “Topology-aware graph pooling net-
works,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2021.

[33] D. Mesquita, A. Souza, and S. Kaski, “Rethinking pooling in
graph neural networks,” Advances in Neural Information Processing
Systems, vol. 33, 2020.

[34] Y. G. Wang, M. Li, Z. Ma, G. Montufar, X. Zhuang, and Y. Fan,
“Haar graph pooling,” in International conference on machine learn-
ing. PMLR, 2020, pp. 9952–9962.

[35] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional
networks with eigenpooling,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 723–731.

[36] H. Yuan and S. Ji, “Structpool: Structured graph pooling via
conditional random fields,” in International Conference on Learning
Representations, 2019.

[37] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering
with graph neural networks for graph pooling,” in International
Conference on Machine Learning. PMLR, 2020, pp. 874–883.

[38] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[39] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in
Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, 2015, pp. 1365–1374.

[40] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta,
and J. Leskovec, “Open graph benchmark: Datasets for machine
learning on graphs,” arXiv preprint arXiv:2005.00687, 2020.

[41] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)
graph isomorphism algorithm for matching large graphs,” IEEE
transactions on pattern analysis and machine intelligence, vol. 26,
no. 10, pp. 1367–1372, 2004.

[42] K. Riesen and H. Bunke, “Iam graph database repository for
graph based pattern recognition and machine learning,” in Joint
IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition
(SSPR). Springer, 2008, pp. 287–297.

[43] X. Wang, X. Ding, A. K. Tung, S. Ying, and H. Jin, “An efficient
graph indexing method,” in 2012 IEEE 28th International Conference
on Data Engineering. IEEE, 2012, pp. 210–221.

[44] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[45] M. Neuhaus, K. Riesen, and H. Bunke, “Fast suboptimal algo-
rithms for the computation of graph edit distance,” in Joint IAPR
International Workshops on Statistical Techniques in Pattern Recogni-
tion (SPR) and Structural and Syntactic Pattern Recognition (SSPR).
Springer, 2006, pp. 163–172.

[46] S. Fankhauser, K. Riesen, and H. Bunke, “Speeding up graph
edit distance computation through fast bipartite matching,” in
International Workshop on Graph-Based Representations in Pattern
Recognition. Springer, 2011, pp. 102–111.

[47] K. Riesen and H. Bunke, “Approximate graph edit distance com-
putation by means of bipartite graph matching,” Image and Vision
computing, vol. 27, no. 7, pp. 950–959, 2009.

[48] D. B. Blumenthal and J. Gamper, “On the exact computation of
the graph edit distance,” Pattern Recognition Letters, vol. 134, pp.
46–57, 2020.

Ning Liu is a Ph.D. student in computer science
and technology from College of Computer, Na-
tional University of Defense Technology, Chang-
sha, China. Her research interests include graph
representation learning, graph data analytic, and
graph processing systems.

Songlei Jian received the B.Sc. degree and
Ph.D. degree in computer science from Col-
lege of Computer, National University of De-
fense Technology, Changsha, China, in 2013
and 2019, respectively. She is currently an As-
sistant Research Fellow with the School of Com-
puter, NUDT. Her research interests include rep-
resentation learning, graph learning, multimodal
learning and anomaly detection.

Dongsheng Li received the B.Sc. degree (with
honors) and Ph.D. degree (with honors) in com-
puter science from College of Computer, Na-
tional University of Defense Technology, Chang-
sha, China, in 1999 and 2005, respectively. He
was awarded the prize of National Excellent
Doctoral Dissertation of PR China by Ministry
of Education of China in 2008. He is now a full
professor at National Lab for Parallel and Dis-
tributed Processing, National University of De-
fense Technology, China. His research interests

include parallel and distributed computing, Cloud computing, and large-
scale data management.

Yiming Zhang (Member, IEEE) received the
B.Sc. and M.Sc. degrees in mechanics engi-
neering and the Ph.D. degree in computer sci-
ence from the National University of Defense
Technology (NUDT), Changsha, Hunan, China,
in 2001, 2003, and 2008, respectively. He is
currently an Associate Professor with the School
of Computer, NUDT. He is an associate editor of
IEEE Transactions on Services Computing. His
current research interests include operating sys-
tems, networking, and distributed storage. He

received the China Computer Federation (CCF) Distinguished Ph.D.
Dissertation Award in 2011.

Zhiquan Lai received his Ph.D, M.S. and B.S.
degrees in Computer Science from National Uni-
versity of Defense Technology (NUDT) in 2015,
2010 and 2008 respectively. He is currently an
assistant professor in the National Key Labo-
ratory for Parallel and Distributed Processing
of NUDT. He worked as a research assistant
at Department of Computer Science, the Uni-
versity of Hong Kong during Oct. 2012 to Oct.
2013. His current research interests include
high-performance system software, distributed

machine learning, and power-aware computing.

Hongzuo Xu received the bachelor’s and mas-
ter’s degree from the National University of De-
fense Technology, China in 2017 and 2019. He
is currently pursuing his Ph.D. degree in the
College of Computer, National University of De-
fense Technology. His research interests include
anomaly detection, weakly-supervised learning
and data mining. He is a student member of the
IEEE.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on December 20,2021 at 02:54:27 UTC from IEEE Xplore. Restrictions apply.

