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ABSTRACT

Link prediction in directed graphs offers a solution for un-
covering detailed and accurate relationships among distinct
entities. Unlike conventional link prediction in undirected
graphs, the task becomes more intricate in directed graphs as
it involves predicting both associations and orientations. Ex-
isting methods simply apply classic graph embedding tech-
niques to learn node representations, followed by mapping
representations of corresponding node pairs into probabilities
indicating potential links. However, the inadequate capture of
orientation information and sole reliance on node representa-
tions for prediction hinder the effective differentiation of ori-
entation, thereby impeding the link prediction accuracy. In
response, we introduce DGLP, an orientation-aware link pre-
diction method tailored for directed graphs. DGLP utilizes
the incidence matrix to learn both node and edge represen-
tations, effectively capturing structural and orientation infor-
mation. By leveraging edge representations, DGLP achieves
accurate link prediction in directed graphs without relying
solely on implicit node representations. Experiments across
six datasets demonstrate the effectiveness of DGLP, achiev-
ing a 1.2x improvement in prediction results.

Index Terms— Link prediction, complex networks, edge
representation learning, directed graph, graph neural network

1. INTRODUCTION

Link prediction in graphs is a fundamental task aiming to
predict missing or potential edges between distinct nodes,
enabling a comprehensive understanding of various complex
systems [1]. In directed graphs, edges represent oriented re-
lationships from source to target nodes, providing a detailed
depiction of associations within diverse systems, including
dialogue systems [2, 3], social networks [4, 5], recommenda-
tion systems [6, 7], and more. Accurately predicting oriented
connections is essential for gaining insights into information
propagation, influence pathways, and decision-making pro-
cesses in complex systems [1]. As a result, link prediction in
directed graphs has become a fascinating field of research.
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Fig. 1. Illustration of link prediction: (a) Traditional methods
individually embed nodes and map node pair representations
to probabilities for potential links. (b) DGLP leverages the
incidence matrix to capture structural and orientation infor-
mation concurrently, learning node and edge representations,
and conducting link prediction based on edge representation.

However, the presence of asymmetric connections in di-
rected graphs introduces complexities to link prediction. It
necessitates identifying associations among distinct entities
and the inherent orientation within these relationships [8].
This dual requirement adds complexity to the task, empha-
sizing the importance of capturing orientation information ef-
fectively. Existing link prediction methods, as depicted in Fig.
1(a), often follow a common scheme [1]. They individually
embed nodes and use representations of corresponding node
pairs to predict potential links. Nevertheless, this approach
may have limitations when applied to directed graphs.

Most existing methods simply apply conventional graph
embedding techniques to learn node representations, resulting
in suboptimal link prediction results. Some of these methods
rely on Laplacian smoothing, requiring the adjacency matri-
ces of input graphs to be semi-definite [9, 10]. To fulfill this
requirement, directed graphs are often preprocessed to ren-
der their adjacency matrices symmetric, inevitably discarding
critical orientation information. Furthermore, certain meth-
ods aggregate features from neighboring nodes, exacerbating
asymmetry within node representations [11, 12]. This inten-



sification presents challenges for association prediction, as it
relies on similar representations for connected nodes.

Moreover, existing methods also encounter challenges in
effectively distinguishing orientations when mapping the rep-
resentation of corresponding node pairs to probabilities in-
dicating potential links. Some methods attempt to predict
potential links using similarity measurements, but this ap-
proach is inherently symmetric and cannot discern orienta-
tion information [8]. Additionally, certain methods employ
predictors that determine link existence between nodes based
on their combined representations [13, 14]. Nonetheless, re-
lying solely on node representations remains challenging for
predicting connection orientation, as the permutations of node
representations cannot fully distinguish orientations.

In response to these challenges, we introduce DGLP, a
novel orientation-aware approach tailored for Directed Graph
Link Prediction. Obviously, edges in directed graphs convey
not only associations but also specific orientations among
nodes. Drawing from this insight, DGLP prioritizes the uti-
lization of information from the directed edges themselves
for link prediction. As illustrated in Fig. 1(b), DGLP lever-
ages the incidence matrix to learn separate representations
for nodes and edges, then conducts link prediction using
edge representations. Benefiting from the capability of the
incidence matrix to describe interactions between edges and
nodes, DGLP could effectively capture associations and their
corresponding orientations. Consequently, DGLP seamlessly
integrates structural information and orientation details of
relevant edges, resulting in enhanced prediction results.

In summary, our contributions are as follows: (i) We
introduce an edge representation learning method utilizing
the incidence matrix to fully extract topology and orientation
information; (ii) We present an innovative orientation-aware
approach that enables accurate link prediction in directed
graphs, offering deeper insights into the intricate structure
and dynamics of various networks. Extensive experiments
over six datasets demonstrate the effectiveness of DGLP in
directed graph link prediction, achieving a notable 1.2x im-
provement in prediction accuracy compared to other methods.

2. METHODOLOGY

2.1. Overview
The objective of DGLP is to unsupervisedly learn edge rep-
resentations that comprehensively capture both structural
and orientation information, enhancing prediction results.
Inspired by Variational Autoencoders (VAE) [15], DGLP
consists mainly of a Graph Encoder and a Graph Decoder, as
illustrated in Fig. 2. Firstly, the input graph G is mapped into
distributions N (µµµv,σσσv) and N (µµµe,σσσe) in the latent space.
Then, latent variables ZZZv and ZZZe are sampled from their
respective distributions, and the incidence matrix is recon-
structed by assessing the affinity between nodes and edges.

2.2. Directed Graph Encoding

Given a directed graph G = (V,E) containing m = |E|
edges and n = |V | nodes, the corresponding incidence ma-
trix is denoted asBBB, with rows and columns indexed by edges
and nodes, respectively. The node feature matrix, denoted as
X ∈ Rn×d, is usually provided with the input graph. If not
available, DGLP initializes it using the degrees of each node.
On the other hand, common datasets often lack initial edge
features E, and DGLP initializes the edge features as below:

E = BBBXΘΘΘ = {εεε0, . . . , εεεm−1} , (1)
where ΘΘΘ is the learnable weight matrix, and εεεi ∈ Rd is the
feature vector of edge ei. Subsequently, subcomponents in-
cluding the node feature encoder and the edge feature encoder
are employed to map G into multivariate distributions in the
latent space, guided by BBB. This process is specified as:

qθθθv
(ZZZv|X,BBB) =

n−1∏
i=0

qθθθv

(
zzz(i)v

∣∣∣X,BBB
)
,

qθθθe
(ZZZe|E,BBB) =

m−1∏
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qθθθe

(
zzz(i)e

∣∣∣E,BBB
)
,

(2)
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(3)

where ZZZe ∈ Rm×d∗
refers to the edge representations, it can

be obtained by sampling from the approximated posterior dis-
tribution qθθθe

(ZZZe|E,BBB). The dimension d∗ is a hyperparam-
eter and is set according to the specific task. And qθθθe

(·) is
designed as a multivariate Gaussian distribution with mean
µµµe and variance σσσe, which can be formalized as:

µµµe = Fµe
(He(E,BBB)), σσσe = Fσe

(He(E,BBB)), (4)
where Fµe

(·) and Fσe
(·) are set to be MLP, although it is

not limited to this. Meanwhile, He(·) is a feature extraction
function based on the incidence matrix and is defined as:

He(E,BBB) = B̃BB ·
(
B̃BB

⊤
·EWWWe

)
WWWv, (5)

where B̃BB = DDD
− 1

2
e BBBDDD

− 1
2

v is the normalized incidence matrix,
DDDv(k, k) =

∑
iBBB(i, k) and DDDe(k, k) =

∑
j BBB(k, j) are de-

gree matrices of nodes and edges, respectively. WWWe ∈ Rd×d∗

and WWWv ∈ Rd∗×d∗
are learnable parameters. All these func-

tions together make up the edge feature encoder with param-
eter θθθe. The node feature encoder follows a similar approach.

2.3. Incidence Matrix Reconstruction

The latent variables ZZZv and ZZZe sampled from the distribu-
tions qθθθv

(ZZZv|X,BBB) and qθθθe
(ZZZe|E,BBB) are discrete and non-

differentiable. To overcome this challenge, the Reparame-
terization [15, 16] technique is utilized, involving a contin-
uous reparameterization step. This entails sampling a noise
variable ϵ from an independent marginal distribution p(ϵϵϵ) ∼
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Fig. 2. The overview of the DGLP framework, including a Graph Encoder and a Graph Decoder. The input graph is mapped
into posterior probability distributions N (µµµv,σσσv) and N (µµµe,σσσe) in the latent space. Latent variables ZZZv and ZZZe are sampled
accordingly. The incidence matrix of the input graph is then reconstructed using calculated affinities between nodes and edges.

N (0, I) and then calculating ZZZe = µµµe +σσσ
1/2
e ⊙ϵϵϵ. The Repa-

rameterization technique is not the only solution, alternative
methods such as Gumbel sampling [17] can also be employed.

Subsequently, DGLP reconstructs the incidence matrix of
the input graph by calculating the affinity between edges and
nodes individually. This process can be described as follows:

qϕϕϕ (BBB|ZZZe,ZZZv) =

m−1∏
i=0

n−1∏
j=0

qϕϕϕ (Bij |ZZZe,ZZZv) , (6)

with

qϕϕϕ (Bij|ZZZe,ZZZv)=
exp
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Γ
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[
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(i)
e

∥∥∥WWWzzz
(j)
v

]))
∑n−1

k=0 exp
(
Γ
(
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[
WWWzzz

(i)
e

∥∥∥WWWzzz
(k)
v

])) , (7)

where [·∥·] denotes the concatenation operation. The learn-
able parameters WWW ∈ Rd′×d∗

and www ∈ R2d′
are used to

model the affinity between edges and nodes, enabling cap-
ture both association and orientation information. Γ(·) is the
LeakyReLU function used to introduce non-linearity. It is
worth noting that qϕϕϕ (Bij |ZZZe,ZZZv) is a modified attention
drawing from GAT [18]. As a result, the incidence matrix can
be reconstructed from node and edge representations.

By minimizing the reconstruction error between the re-
constructed incidence matrix and the original one, the graph
encoder and decoder can be trained effectively without any
annotations. Referring to the ELBO of VAE, the unsuper-
vised reconstruction objective of DGLP can be defined as:
argmin

θθθ,ϕϕϕ
Lre = D [qθθθv

(ZZZv|X,BBB)∥p(ZZZv)]

+D [qθθθe
(ZZZe|E,BBB)∥p(ZZZe)]− E [log qϕϕϕ (BBB|ZZZe,ZZZv)] ,

(8)

where E[·] stands for Eqθθθe (ZZZe|E,BBB),qθθθv (ZZZv|X,BBB)[·], θθθe, θθθv ∈ θθθ,
and D[·] is the Kullback-Leibler divergence.

2.4. Link Prediction
The main objective of DGLP is to comprehensively capture
the structural and orientation information inherent in directed
graphs, thereby enhancing the precision of link prediction re-
sults. Once the graph encoder and decoder have been trained
to converge, DGLP can generate effective representations for

nodes and edges. Subsequently, the link prediction for edge
eij : vi 7→ vj can be formalized as follows:

yyy∗ = Softmax(Fe(ZZZeij )), (9)
where Fe(·) is implemented as an MLP serving as the link
predictor. This selection offers flexibility and can be tailored
to the specific task. The output yyy∗ is a probability vector in-
dicating the presence or absence of the link from node vi to
vj . Then the binary Cross-Entropy loss function is employed
to train the predictor, formalized as:

argmin
ω

Lbce(yyy
∗, yyy), (10)

where yyy represents the ground truth labels for directed links
and ω denotes the parameter of the predictor.

3. EXPERIMENTS

3.1. Datasets and Settings
To demonstrate the effectiveness of DGLP, we conduct com-
parative experiments on six diverse directed graphs, meticu-
lously grouped into two distinct categories. The first category
encompasses citation networks, including Cora, Citeseer, and
WikiCS. Meanwhile, the second category pertains to hyper-
link networks among web pages associated with computer
science departments at Cornell, Texas, and Wisconsin univer-
sities. Each of these graphs is endowed with node features,
while edge features are initialized using Equation (1).

The process of edge representation learning is accom-
plished in an unsupervised manner by reconstructing the
incidence matrix. The subsequent link predictor training pro-
cess follows a semi-supervised strategy, with 20% of edges
randomly selected as training samples. To address the chal-
lenges posed by imbalanced classification, we ensure an equal
distribution of positive and negative samples during predictor
training. Furthermore, we introduce synthetic edges by selec-
tively removing existing edges and incorporating non-existent
edges in a randomized manner.

3.2. Baseline Methods

We compare DGLP with ten baseline methods, which could
be categorized into three groups: (i) Spectral-based methods



Table 1. Link prediction results for various methods on six datasets. ACC represents prediction accuracy, while F1 denotes the
F1 score. Higher accuracy and F1 scores indicate superior prediction performance. The NaN value indicates non-convergence.

Methods Cora Citeseer WikiCS Cornell Texas Wisconsin

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

GCN 0.866±0.008 0.871±0.008 0.906±0.004 0.911±0.004 0.746±0.042 0.743±0.049 0.762±0.059 0.763±0.064 0.725±0.057 0.728±0.052 0.789±0.044 0.789±0.046

ChebNet 0.715±0.007 0.723±0.007 0.773±0.010 0.772±0.012 0.763±0.057 0.763±0.056 0.616±0.034 0.613±0.034 0.637±0.028 0.640±0.026 0.680±0.028 0.669±0.030

SAGE 0.848±0.026 0.854±0.025 0.912±0.008 0.912±0.008 0.658±0.037 0.658±0.037 0.848±0.026 0.851±0.026 0.873±0.016 0.872±0.016 0.856±0.035 0.860±0.035

APPNP 0.883±0.007 0.881±0.007 0.851±0.014 0.851±0.014 0.739±0.038 0.738±0.038 0.738±0.052 0.743±0.055 0.724±0.029 0.731±0.027 0.741±0.058 0.742±0.061

GIN 0.919±0.005 0.921±0.005 0.961±0.003 0.961±0.003 0.763±0.039 0.765±0.037 0.876±0.047 0.880±0.046 0.876±0.028 0.875±0.032 0.831±0.132 0.791±0.274

GAT 0.825±0.010 0.825±0.011 0.844±0.014 0.844±0.010 0.709±0.023 0.709±0.023 0.819±0.037 0.823±0.037 0.820±0.053 0.822±0.053 0.823±0.027 0.821±0.027

DGCN 0.844±0.011 0.844±0.012 0.860±0.005 0.862±0.005 NaN NaN 0.818±0.032 0.819±0.033 0.823±0.044 0.823±0.042 0.828±0.041 0.827±0.041

DiGCN 0.797±0.105 0.753±0.263 0.713±0.042 0.713±0.057 NaN NaN 0.606±0.022 0.593±0.025 0.616±0.057 0.630±0.046 0.640±0.046 0.621±0.055

DiGCN-IB 0.903±0.004 0.901±0.004 0.879±0.015 0.881±0.015 NaN NaN 0.640±0.029 0.640±0.029 0.656±0.026 0.662±0.025 0.702±0.040 0.703±0.041

MagNet 0.920±0.006 0.922±0.006 0.957±0.002 0.962±0.002 0.812±0.030 0.806±0.038 0.628±0.044 0.921±0.006 0.572±0.027 0.587±0.060 0.516±0.018 0.421±0.212

DiGAE 0.598±0.002 0.602±0.002 0.673±0.001 0.619±0.005 0.638±0.001 0.683±0.002 0.679±0.001 0.609±0.002 0.688±0.003 0.615±0.002 0.620±0.002 0.578±0.001

DGLP-N 0.907±0.052 0.908±0.057 0.913±0.012 0.912±0.003 0.880±0.029 0.884±0.026 0.987±0.005 0.981±0.014 0.908±0.015 0.918±0.054 0.975±0.011 0.974±0.012

DGLP-M 0.904±0.009 0.907±0.009 0.926±0.002 0.927±0.002 0.902±0.003 0.903±0.004 0.991±0.003 0.988±0.002 0.991±0.001 0.987±0.001 0.990±0.004 0.990±0.005

DGLP-E 0.486±0.002 0.029±0.019 0.518±0.004 0.242±0.058 NaN NaN 0.581±0.044 0.663±0.031 0.528±0.012 0.327±0.042 0.537±0.026 0.413±0.189

DGLP 0.997±0.004 0.991±0.004 0.998±0.003 0.998±0.003 0.913±0.004 0.912±0.004 0.992±0.013 0.991±0.011 0.996±0.006 0.997±0.005 0.995±0.010 0.993±0.011

that generate node representations through Laplacian smooth-
ing, including GCN [9] and ChebNet [10]. (ii) Spatial-based
methods learn node representations based on aggregation
information from the neighborhood, including SAGE [19],
APPNP [20], GIN [12], and GAT [18]. (iii) Directed GNN-
based methods designed specifically for directed graphs that
incorporate orientation information to produce node repre-
sentation, including DGCN [21], DiGCN [14], MagNet [13],
and DiGAE [8]. For link prediction tasks, we follow the
common settings [8, 13] to carry out this task.

3.3. Link Prediction

We evaluate prediction results using accuracy and F1 scores,
where higher accuracy and larger F1 scores indicate better
performance. To ensure fair comparisons, consistent predic-
tors are employed across all methods. The prediction results,
as presented in Table 1, reveal that spatial-based and di-
rected GNN-based methods outperform spectral-based ones.
Spectral-based methods often preprocess adjacency matrices
to be semi-definite for Laplacian smoothing, inevitably ne-
glecting orientation information. These findings underscore
the importance of incorporating orientation information into
representations for link prediction in directed graphs.

Moreover, spatial-based methods excel on hyperlink net-
works, while directed GNN-based methods perform well on
citation networks. This suggests that spatial-based methods
may struggle with complex graphs, whereas directed GNN-
based methods may not effectively capture orientation infor-
mation on simple graphs. In contrast, DGLP consistently per-
forms well across all directed graphs, highlighting its effec-
tiveness in capturing both structural and orientation informa-
tion for enhanced link prediction accuracy. Additionally, this
also demonstrates the benefits of learning effective edge rep-
resentations for link prediction in directed graphs.

3.4. Ablation Study

In order to further assess the capabilities of DGLP, we con-
ducted an ablation study encompassing three variants: DGLP-
N, DGLP-M, and DGLP-E. In the DGLP-N variant, link pre-
diction is solely accomplished through node representations.
Additionally, DGLP-M involves learning edge representa-
tions through MLPs without the use of the incidence matrix.
Finally, DGLP-E randomly initializes edge features from ran-
dom noises without using Equation (1). The results of the
ablation study are present in the bottom part of Table 1.

Comparing the results of DGLP-E with those of DGLP-
N and DGLP-M, we can conclude that learning effective
edge representations is crucial for link prediction in directed
graphs. Moreover, DGLP-M exhibits a slight performance
improvement over DGLP-N, emphasizing the advantages of
edge representation learning. Notably, DGLP consistently
outperforms all variants, further reaffirming its effectiveness
in learning edge representations to enhance prediction results.

4. CONCLUSION

This paper introduces DGLP, an orientation-aware link pre-
diction method tailored for directed graphs. DGLP focuses
on directly and comprehensively learning edge representa-
tions through the utilization of the incidence matrix. This
approach enables the effective capture of both structural and
orientation information, consequently enhancing link predic-
tion accuracy. Through extensive experiments conducted on
six widely used directed graphs, DGLP consistently outper-
forms various baseline methods.
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