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a b s t r a c t 

Modern network intrusion detection systems always utilize deep learning to improve their intelligence 

and feature learning abilities. To overcome the difficulties of accessing a large amount of labeled data and 

achieve early warning, lots of intrusion detection systems focus on unsupervised anomaly detection meth- 

ods. However, most unsupervised anomaly detection methods ignore the temporal context and anomaly 

contamination in network intrusion data, which leads to suboptimal detection results. By considering 

the above practical problems, we propose a robust unsupervised intrusion detection system, i.e, RUIDS, 

by introducing a masked context reconstruction module into a transformer-based self-supervised learning 

scheme. The self-supervised learning scheme is designed to learn the intrinsic relationship within tempo- 

ral contexts. And the masked context reconstruction module can learn more robust representations which 

are less sensitive to anomaly contamination. Extensive experiments on four intrusion datasets are con- 

ducted to show the effectiveness and robustness of RUIDS. Specifically, RUIDS achieves 9.04% and 9.58% 

improvements over the second-best method on the UNSW-NB15 and CICIDS-WED datasets in terms of 

AUC value respectively. We also test the robustness of our method with different anomaly contamination 

ratios, and our algorithm’s performance has hardly decreased. The ablation study confirmed the effective- 

ness of the self-supervised learning scheme and the masked context reconstruction module. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the widespread use of the Internet, the importance of cy- 

er security is increasing. The network intrusion detection system 

IDS) is an effective technology to detect malicious network ac- 

ivity and enhance cyber security. With the powerful representa- 

ion capability of deep learning, great progress on supervised net- 

ork intrusion detection has been made Buczak and Guven (2015) ; 

avaid et al. (2016) ; Wang et al. (2017, 2021) . However, supervised 

eep learning-based intrusion detection methods require a large 

mount of labeled data for training while manually labeling data 

s expensive and difficult, especially for some zero-day intrusions 

r attacks. 
Abbreviations: RUIDS, the robust unsupervised intrusion detection system. 
� This document is the results of the research project funded by the National Nat- 

ral Science Foundation of China (No. 62002371 , No. U19A2060 , No. 62172431 ), the 
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In order to avoid using a large amount of labeled data and 

chieve early detection of unseen intrusions, a lot of works 

ocus on unsupervised intrusion detection Falco et al. (2019) ; 

isioti et al. (2018) which organizes the network data pack- 

ts as normal tabular data and then conducts clustering 

ong et al. (2018) , reconstruction Alom and Taha (2017) or one- 

lass classification Bergman and Hoshen (2020) to separate the 

ormal data and abnormal data. However, the existing unsuper- 

ised intrusion detection methods fail to capture the real data 

haracteristics of intrusion data, i.e., temporal context and anomaly 

ontamination . Different from the general tabular data, which as- 

umes that the objects follow the independent and identical dis- 

ribution, the intrusion dataset has temporal context characteris- 

ics Also, the temporal context of the intrusion dataset is differ- 

nt from the time series data, such as smart meter and stock price 

atasets, in which time series exist in the entire dataset. It means 

rom the first data object to the last data object is in line with the

ime series relationship. Intrusion detection systems typically ex- 

mine all data packets entering and leaving of network for signs of 

ntrusion. Some intrusion behaviors can only be established under 

ertain contexts. The temporal contexts we proposed are specific 

n the intrusion datasets which emphasize the time order within 
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Fig. 1. The illustration of intrusion detection on clean data and contaminated data. 
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he contexts. Take a DOS (Denial of Service) attack as an exam- 

le, which continuously sends a large number of data packets to 

he target host, delays the processing speed of the target host, and 

revents the processing of normal tasks. The temporal order only 

xists when the attack begins. And there are no order relationships 

etween different attacks. 

Another important characteristic of intrusion data is anomaly 

ontamination. As shown in Fig. 1 (a), intrusion detection on clean 

ata can be conducted with the common unsupervised anomaly 

etection methods which assume that all unlabeled data are nor- 

al ones. However, the practical intrusion situation is usually con- 

aminated with unknown anomaly data which may cause a biased 

ecision boundary learned by common IDS as shown in Fig. 1 (b). 

pecifically, if there are outliers in the reconstruction-based train- 

ng data, the model will learn some information about the outlier 

ata, which will cause the decision boundary to be biased. Most 

ne-class classification methods ignore the anomaly contamination 

nd assume that all the training data is normal in order to learn a 

ypersphere or distance boundary to classify all positive samples 

nto one class. And clustering-based detection methods are easily 

usceptible to anomaly contamination which makes their perfor- 

ance unstable. 

To capture the temporal context and alleviate the anomaly con- 

amination problem, we propose a robust unsupervised intrusion 

etection system, i.e., RUIDS, by introducing masked context recon- 

truction into a transformer-based self-supervised learning scheme. 

ifferent from the common self-supervised learning scheme, we 

dopt a transformer module to represent the temporal contexts 

nstead of transforming individual objects with a multilayer per- 

eptron. In this way, the temporal contexts and the sequential in- 

ormation inherent in the contexts are both preserved. With the 

ransformer-based self-supervised learning scheme, the abnormal 

ehavior can be fully exposed by transforming the original feature 

pace into multiple representation spaces. Moreover, we propose 

he masked context reconstruction module which reconstructs the 

asked data by the unmasked data in a context. The masked 

ontext reconstruction process is conducted on each transformer- 

ased data transformation. In this way, the self-supervised learning 

cheme becomes less insensitive to anomaly contamination and 

he contextual relationships can be learned in the transformed rep- 

esentation as shown in Fig. 1 (c). The contributions of our work are 

ummarized as follows: 

• We propose a robust unsupervised intrusion detection system, 

i.e., RUIDS, with a novel self-supervised masked context recon- 

struction scheme, which simultaneously achieves accurate and 

robust intrusion detection without any labeled data. 

• We propose the transformer-based self-supervised learning 

scheme for temporal context which is capable of learning the 

intrinsic relationships within temporal contexts. 

• We propose the masked context reconstruction module in- 

serted into the self-supervised learning scheme to learn more 

discriminative representations which magnify the abnormal in- 
2 
trusion behaviors and achieve greater tolerance for anomaly 

contamination. 

Extensive experiments show that (1) the RUIDS outperforms 

he state-of-the-art unsupervised methods in terms of accuracy, F1 

core, and the AUC (Area Under Curve) value on four real-world 

atasets; (2) comparing with other unsupervised methods, RUIDS 

s more robust with contamination data, and its detection accu- 

acy hardly drops when the contaminated ratio less than 30%; (3) 

he transformer-based self-supervised learning scheme and mask 

ontext reconstruction module both make contributions to the in- 

rusion detection with a thorough ablation study. 

. Related work 

.1. Unsupervised anomaly detection 

In recent years, in order to detect network attacks with the ab- 

ence of labels, researchers have proposed a large number of unsu- 

ervised intrusion detection methods. Unsupervised deep learning 

ethods have become mainstream because of their ability to de- 

ect new types of attacks. We categorize unsupervised IDS into the 

econstruction-based method, clustering-based method, and one- 

lass classification method. 

.1.1. Reconstruction-based methods 

Reconstruction-based methods assume that outliers cannot be 

fficiently compressed or reconstructed from a low-dimensional 

apping space. Compared to normal data, outliers have a high cost 

f reconstruction. The representative method of the reconstruction- 

ased method is Principal Component Analysis (PCA) by using 

inear projection Tran and Tran (2018) . The improved method 

’Reilly et al. (2016) cuts down the sensitivity of data by forcing re- 

uced dimensions of data. Autoencoder Sadaf and Sultana (2020) ; 

u and Fan (2022) is a commonly reconstruction-based neural 

etwork. It is based on the backpropagation algorithm and op- 

imization method (such as the gradient descent method). Au- 

oencoder methods use the input data as supervision to guide 

he neural network to learn a better representation. Abnormal 

etection is determined by the difference between the recon- 

tructed output and the input. Generative Adversarial Network 

GAN) Beula Rani and Sumathi M. E (2020) detects anomalies by 

odeling normal behavior through an adversarial training pro- 

ess and determines anomalies based on anomaly scores. However, 

econstruction-based methods do not consider the loss of effective 

nformation caused by compressing data. Moreover, such methods 

sually cannot effectively reconstruct the original data from the 

ow-dimensional projection of the data if there exists anomaly con- 

amination. 

.1.2. Clustering-based methods 

The clustering-based method is another popular anomaly de- 

ection pattern. The deep clustering method formed by the com- 

ination of deep learning and clustering improves the clustering 

ffect. This method usually uses a deep neural network to extract 

eatures and cluster the features to obtain the detection results. K- 

eans algorithm Ma et al. (2019) ; Yang et al. (2016) realizes the 

ivision of samples by minimizing the mean square error within 

he class, but this algorithm is greatly affected by initialization, 

nd cannot handle data with non-convex cluster shapes. The spec- 

ral clustering algorithm Shaham et al. (2018) transforms the clus- 

ering problem into an undirected graph multiplexing problem. By 

xplicitly solving the feature map, a batch training strategy can be 

sed to improve the scalability of large-scale data. But this ex- 

licitly solved feature map is not guaranteed to be globally op- 

imal. Subspace clustering Ji et al. (2017) assumes that the data 
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f the same class are distributed in the same subspace, and the 

ata of different classes are in different subspaces. The deep sub- 

pace clustering algorithm Zhang et al. (2019) can make full use 

f the powerful feature extraction ability of neural networks and 

se more discriminative features to find more accurate subspaces. 

ompared with other deep clustering algorithms, it has a better ef- 

ect on processing high-dimensional data. Gaussian Mixture Mod- 

ls (GMM) assume that the samples of each class obey a separate 

aussian distribution, and the overall data obey a mixture of mul- 

iple Gaussian distributions. DAGMM Zong et al. (2018) combines 

he dimensionality reduction process and the density estimation 

rocess for end-to-end joint training. Compared with other algo- 

ithms, DAGMM has a large performance improvement. Mutual in- 

ormation Zhao et al. (2020) and KL divergence Xie et al. (2015) can 

lso be used as clustering metrics. However, the learning models 

f deep clustering still cannot learn discriminative abnormal fea- 

ures, and these methods usually only use the statistical features 

f network traffic for intrusion detection, ignoring the time-series 

eatures of network traffic, and the detection accuracy is low. 

.1.3. One-class classification methods 

One-class methods assume that only normal data exists, or that 

he amount of abnormal data relative to normal data is minimal. 

CSVM Schölkopf et al. (1999) attempts to construct a hyperplane 

hat separates all data points from zeros in the feature space, max- 

mizing the distance from the separating hyperplane to the zeros. 

eep-SVDD Ruff et al. (2018) adopts a hypersphere rather than a 

yperplane to determine outliers. The algorithm obtains a spherical 

oundary around the data in feature space, and the volume of this 

ypersphere is minimized, thereby minimizing the effect of out- 

iers. This method makes decisions by hyperplane or hypersphere 

nd judges the outer samples. Because kernel function calculation 

s time-consuming, it limits its application in massive data scenar- 

os. Classical AD methods such as the One-Class SVM often fail in 

 high-dimensional and deep method that exits the hypersphere 

ollapse 

.2. Self-supervised anomaly detection 

Self-supervised learning is a type of unsupervised learning. Self- 

upervised learning mainly uses pretext tasks to mine its own su- 

ervision information from large-scale data. The neural network is 

rained by structured supervision information so that it can learn 

aluable representations for downstream tasks. The self-supervised 

nomaly detection models based on their pretext task into self- 

redictive methods and contrastive methods. 

Self-predictive methods usually create the pretext task for ev- 

ry individual sample. It learns data representation by predict- 

ng the data transformation type or reconstructing original sam- 

les. Liron Bergman and Hoshen (2020) proposes the GOAD al- 

orithm which constructs a classification task through geomet- 

ic transformation for anomaly detection. GOAD trains a neural 

etwork to map the transformed data to a new sample space, 

nd maps each transformed subspace to a hypersphere under the 

dea of One-class classification. Wang et al proposed the SLA 

2 P 

ang et al. (2021) framework for anomaly detection. SLA 

2 P applies 

andom projections to the embeddings by multiplicating matrices 

ampled randomly from a standard normal distribution. Transfor- 

ations by different matrices give rise to pseudo labels, on which 

 DNN classifier is trained. The anomaly scores are generated lever- 

ging the predictive uncertainty estimates of the network on the 

erturbed transformed features. 

Contrastive methods mainly construct positive and negative 

amples through a pretext task. Representation is learned by com- 

aring the distance difference between positive and negative sam- 

les. Inspired by the self-supervised learning of images, Chen et al 
3 
iu et al. (2021) borrowed learnable transformations to deal with 

nomaly detection and embedded the transformed data into a 

emantic space where the transformed data representations are 

imilar to the original data representations. The transformation 

paces are easy to distinguish from each other. A new contrastive 

earning method for enhanced distribution is proposed by Kihyuk 

ohn et al. (2020) . This method expands the distribution of training 

ata through data enhancement and uses the transformation data 

s different samples for self-supervised learning. Self-supervised 

earning tends to make the distance between different sam ples pull 

way, so in addition to pulling away from the original different 

amples, the transformation samples are also pulled away from the 

riginal samples. The sample distribution of the original data set 

oes not obey the uniform distribution, and it is easy to separate 

ormal samples from abnormal samples. Finding suitable pretext 

asks is the most in-demand problem for self-supervised learning 

nd the representations learned by self-supervised methods need 

o meet the optimization goals of anomaly detection. 

.3. Time series anomaly detection 

The time series anomaly detection method based on deep 

earning performs well in high-dimensional data. Recurrent neu- 

al network (RNN) can capture the time series characteristics and 

emember the sequence data well, so it has the most advantage 

n dealing with sequence data. LSTM is a variant of RNN and per- 

orms better in solving long-distance memory problems. Malho- 

ra et al Malhotra et al. (2015) proposed a time series anomaly 

etection algorithm based on L STM (Stack-L STM). The model first 

rains the model on the non-abnormal time series in an unsu- 

ervised way and then takes the trained model as a predictor to 

btain the prediction error. The prediction error is input into the 

ultivariate Gaussian distribution for anomaly detection. Lin et al 

in et al. (2020) proposed a time series anomaly detection model 

ased on the VAE-LSTM hybrid model. The model uses the VAE 

odule to form robust reconstruction features on the short win- 

ow, then uses LSTM to estimate the long-term correlation of the 

eries on the basis of VAE reconstruction features. The anomaly is 

istinguished according to the reconstruction error and threshold. 

lthough these methods can achieve good performance in model- 

ng the short-term timing information in the sequence, they are 

ifficult to capture the long-term timing dependence in the data. 

t the same time, we notice that the attention mechanism can al- 

ow the information of the time step at any distance from the cur- 

ent time step to flow to the current time step, which makes the 

ime series modeling method based on the attention mechanism 

an provide the model with long-term timing dependence capture 

bility. 

The transformer is an encoder-decoder structure based on 

n attention-based mechanism. Yang Yang et al. (2022) pro- 

oses an intrusion detection model based on an improved vi- 

ion transformer (ViT). A sliding window mechanism is presented 

o improve the capability of modeling local features for ViT. Ho 

o et al. (2022) uses image conversion from network data flow 

o produce an RGB image that can be classified using advanced 

eep-learning models. A Vision Transformer is used as a classi- 

er to classify the resulting image. Shreshth Tuli et al. (2022) pro- 

oses TranAD, which is an anomaly detection and diagnosis model 

ased on the deep transformer. TranAD uses attention-based se- 

uence encoders to quickly perform reasoning and understand 

roader time trends in data. TranAD uses self-tuning based on 

ocus scores to achieve powerful multimodal feature extraction 

nd confrontation training to achieve stability. These methods di- 

ectly process the intrusion data or convert it into image data, 

ithout taking into account the temporal context of the intrusion 

ata. 
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Fig. 2. The overview of RUIDS. 

3

t

t

t

i

s

p

m

t

t

g

p

t

d

t

p

d

t

t

r

s

f

l

i

c

a

s

t

t

t

c

3

t

m

r

s

h

a

t  

F

Q

t

T

h

t

s

i  

e  

t

t

t

t  

{  

s

s

d  

t

a

 

w

t

f

f

s

o  

s

s

w

g

i  

t

f

t

X
a

c

n

t

. Method 

We develop a robust unsupervised intrusion detection sys- 

em (RUIDS), a deep intrusion detection method based on a 

ransformer-based self-supervised learning scheme. A masked con- 

ext reconstruction module is added to this scheme which is used 

n the temporal contexts to enhance the robustness of RUIDS. The 

cheme and the module are joint training together in the training 

rocess and we define an intrusion score to measure the abnor- 

ity of test data. 

Fig. 2 shows the overview architecture of our RUIDS. It con- 

ains two main parts,i.e., the self-supervised learning scheme and 

he masked context reconstruction module. Intrusion data sets are 

enerally expressed as feature information extracted from data 

ackets which are shown as tabular data. To better extract the 

ime series information of the data, we slice the data and set N

ata objects to act as a context according to the time stamps. In 

he self-supervised learning scheme, we randomly sample multi- 

le data objects from the context and mask the rest objects. We 

esign a series of learnable transformations to transform the con- 

ext into different latent spaces. A transformer module is added to 

hese transformations to extract the sequential information of the 

etained data objects. The transformation spaces provide similar 

emantic information to the original features, and different trans- 

ormations have different views from each other. The contrastive 

oss between the transformation version and the original version 

s calculated to optimize the neural network. The masked samples 

an be reconstructed by retaining samples according to the char- 

cteristic of the temporal context. In the masked context recon- 

truction module, We add a transformer module as the decoder 

o reconstruct masked samples. The input of this decoder is the 

ransformer encode embedding of the retaining data and the posi- 

ion embedding of the masked data. The reconstruction loss only 

onsiders the mean square difference of masked data objects. 

.1. Transformer-based self-supervised learning scheme 

In unsupervised intrusion detection tasks, we cannot directly 

rain neural networks without labels. Self-supervised learning 

ethods use certain characteristics of the data itself to learn data 

epresentations. For image or video data, the method of con- 

tructing positive and negative pairs of data through image en- 

ancement (such as cropping, flipping, and color transformation), 

nd performing constructive learning to obtain data representa- 
4 
ion has achieved good results Feng et al. (2021) ; Li et al. (2021) .

or tabular data, the NeuTral AD method proposed by Qiu et al 

iu et al. (2021) to construct the transformation version of con- 

ext is state-of-the-art and we learn from this method in our work. 

he data of the intrusion dataset has a contextual correlation and 

as hardly been considered in previous work. In order to extract 

his sequential characteristic, we design a self-supervised learning 

cheme based on the transformer structure Vaswani et al. (2017) . 

Assume that a network behavior dataset X has n objects, that 

s, X = { x 1 , x 2 , . . . , x n } and there is no label for every object. For

very data object x ∈ X , the dimension of x is I. Inspired by

he MAE He et al. (2021) model, we process the data in con- 

ext and take C data objects as a data context without repe- 

ition according to the original order and the number of con- 

exts is H = � ( n/C ) � . The h data context is represented as X h =
 x C(h −1)+1 , x C(h −1)+2 , . . . , x C∗h } . For each data context, we randomly

ample S data objects and mask the remaining data samples. This 

ample operation is not repeated and the sample order of different 

ata contexts is not the same as each other. For the h data con-

ext, we mark the sample data set as X 

S 
h 

and the masked data set 

s X 

M 

h 
. 

Consider a set of transformations T , T = { T 1 , T 2 , . . . , T K } and

e assume that these transformations are learnable. That is, these 

ransformations can be expressed by a series of combinations of 

unctions that can be optimized by gradient descent. These trans- 

ormations encourage the transformed version x m = T m 

( x ) to be 

imilar to the original version x while encouraging it different from 

ther transformation versions x n = T n ( x ) if m � = n . We define the

core of two different transformed versions as 

 ( x m , x n ) = exp 

(
sim 

(
f φ( T m 

(x ) ) , f φ( T n (x ) ) 
)
/τ

)
(1) 

here τ is an adjustable temperature parameter and is designed to 

et a better result. The similarity is defined as the cosine similar- 

ty sim (a, b) = a · b/ ‖ a ‖‖ b‖ in the embedding space. The f φ func-

ion is designed to extract the inherent feature. We deploy a trans- 

ormer module as this f φ function to extract sequential informa- 

ion in the embedding space of transformation versions. 

In our self-supervised scheme, the data object in the context 

 H is divided into the sampled dataset X 

S 
H 

and masked dataset X 

M 

H 
fter the transformation operation. Only sampled dataset X 

S 
H 

in the 

ontext is used to extract the temporal context and expose the ab- 

ormal information through the transformer module. All objects of 

he context X are mapped to an embedding space through a linear 
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1

1

1

1

1

T

a

s

ayer to get the input of the transformer encoder z 0 . 

 0 = X E + E pos , E ∈ R 

I×D , E pos ∈ R 

C×D (2) 

The transformer encoder uses constant latent dimension D 

hrough all of its layers, so we map the data object to D dimen-

ions with a trainable linear projection embedding E ( Eq. 2 ). Posi- 

ion embeddings E pos are added to the data embeddings to retain 

he position information. The transformer encoder consists of self- 

ttention(SA) and MLP block. Layernorm (LN) is applied before ev- 

ry block and residual connections after every block. We put the 

mbedding of X 

S dataset z S 
0 

∈ z 0 into the transformer module to 

et the encoder embedding as Eq. 3 . 

z S en 

)′ = SA encoder 

(
LN 

(
z S 0 

))
+ z S 0 

 

S 
en = MLP encoder 

(
LN 

((
z S en 

)′ ))
+ 

(
z S en 

)′ (3) 

As we can see, the transformer encoder module only deals with 

he linear embedding of the sampled dataset. In our scheme, we 

pply a one-layer transformer module as the f φ function in the 

q. 1 to obtain the embedding of the transformed version of T i (x ) .

he contrastive loss is designed to guide optimizing the network. 

 con = −
K ∑ 

k =1 

log 
s 
(
x k , x 

)
s 
(
x k , x 

)
+ 

∑ 

l � = k s 
(
x k , x l 

) (4) 

The contrastive loss encourages the transformation version x k 

o be similar to x in the embedding space and different transfor- 

ation versions are different from each other. Contexts are trans- 

ormed by a set of learnable transformations and then the sampled 

ataset transformations are mapped into latent space by the trans- 

ormer module. The transformations and the transformer encoder 

re trained jointly by the contrastive loss. 

.2. Masked context reconstruction 

In the transformer-based self-supervised learning scheme, only 

ampled objects are used to extract the temporal context fea- 

ure. We get the embedding of sampled objects z S en through 

he one-layer transformer encoder. For masked objects, we pro- 

ose a masked context reconstruction module adding to the self- 

upervised scheme to enhance the robustness of RUIDS. 

The masked context is reconstructed through a one-layer trans- 

ormer structure which is used as a decoder. The input of the de- 

oder is consist of the embedding of the encoder z S en and mask 

okens E token , which is a zero vector that indicates the presence of 

he masking part. The input of the decoder z 1 is calculated as 

 1 = 

[
z S en ; E token 

]
+ E pos , E token ∈ R 

(K−L ) ×D , E pos ∈ R 

K×D (5) 

The splicing of z S en and E token is set to the previous position as 

he original order before masking. Position embedding is added to 

he set of splices to indicate the position of all embedding. The 

tructure of the decoder is similar to the encoder. The transformer 

ecoder also includes a self-attention(SA) and an MLP block. We 

et the reconstruction of the masked samples y by the decoder 

odule which is consisted of a one-layer transformer module and 

 linear layer. 

 

′ 
de 

= SA decoder ( LN ( z 1 ) ) + z 1 
 de = MLP decoder 

(
LN 

(
z ′ 

de 

))
+ z ′ 

de 

 = LN ( z de ) 

(6) 

The last linear layer LN changes the output of the transformer 

o the original dimension. The output of the decoder module y 

as the same dimension as the input data. We calculate the mean 

quared error (MSE) between the output of the decoder module 
5 
 

M 

h 
and the original data X 

M 

h 
of masked data as the reconstruction 

oss. 

 rec = 

1 

M ∗ H 

H ∑ 

h =1 

(
Y 

M 

h − X 

M 

h 

)2 
(7) 

We calculate the average reconstruction loss of objects which 

elong to context-masked sets X 

M 

h 
. 

.3. Learning intrusion score 

Normal objects can be reconstructed easily by the autoencoder 

odule and intrusion objects have difficulty reconstructing to orig- 

nal data for intrusion objects are far from normal objects in em- 

edding space. It means, that the average value of reconstruction 

oss for intrusion objects is bigger than normal objects and recon- 

truction loss can be used to detect intrusion objects. The numer- 

tor of the contrastive loss encourages the transformed samples to 

imilar to the original objects while the denominator pushes the 

ransformer version apart from each other in embedding space. 

During training, the objects of intrusion datasets are divided 

nto two datasets: the sampling objects dataset and the mask- 

ng objects dataset. Context objects are transformed by a set of 

earnable transformations and the transformed version of the sam- 

ling dataset is embedded into a latent space by a one-layer trans- 

ormer module. Masking objects are reconstructed through the 

ransformer encoder and transformer decoder modules. The train- 

ng loss of the RUIDS algorithm is as: 

 = L con + αL rec (8) 

The training loss is consist of the contrastive loss of the sam- 

ling context and the reconstruction loss of the masking context. 

he contribution of two loss is determined by the α factor and 

e will test parameter sensitivity in terms of the value of α in 

he next section. The detail of the training process is shown in 

lgorithm 1 

lgorithm 1 Learning Process for RUIDS. 

equire: X -the intrusion dataset, H-the number of contexts, K- 

the number of transformations, α- the proportion of loss 

nsure: � - the parameters of the network 

1: Generate context set { X 1 , X 2 , . . . , X H } 
2: for i = 1 to epoch do 

3: for h = 1 to H do 

4: for k = 1 to K do 

5: X k 
h 

← T k ( X h ) 
6: end for 

7: X h ← 

[
X h ; X 1 

h 
; . . . x K 

h 

]
8: Generate the masking context X M 

h 
and sampling context 

X S 
h 

9: z _ en S 
h 

← T rans f or mer _ encoder 
(
X S 

h 

)
ref. to Eq. (2) and 

Eq.(3) 

0: Calculate the L con ref. to Eq.(4) 

11: z _ in h ← 

[
z _ en S 

h 
; E token 

]
+ E pos 

2: z _ de h ← T rans f or mer _ d ecod er ( z _ in h ) ref. to Eq. (6) 

3: Calculate the L rec ref. to Eq.(7) 

4: L = L con + αL rec 

5: � ← � − Adam [ ∇ �L ] 

6: end for 

17: end for 

The detection process is different from the training process. 

here are no data in the testing dataset which is masking to gener- 

te a masking dataset. During the testing phase, we learn an intru- 

ion score to judge the degree of abnormality of each data. We use 
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Table 1 

Statistics of the public benchmark datasets. Dim. refer to the dimension of 

the features. 

Dataset Normal Abnormal Anomaly Ratio % Dim. 

KDDCUP 396,743 97,278 19% 41 

UNSW-NB15 56,000 119,341 68% 48 

CICIDS17-FRI 127,538 158,930 55% 80 

CICIDS17-WED 440,031 252,672 36% 80 

T
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he value of the contrastive loss function of the data as the intru- 

ion score. During the training process, the masking dataset does 

ot go through the transformer-encoder structure, and the contras 

oss value cannot be obtained. So the data was not masked during 

he testing phase. We define the intrusion score S ( x ) as 

 ( x ) = L con ( x ) (9) 

The process of calculating the intrusion score is shown in 

lgorithm 2 . The test objects are sorted according to the descend- 

lgorithm 2 Detection Process for RUIDS. 

equire: X -the intrusion dataset, H-the number of contexts, K- 

the number of transformations, � - the parameters of the net- 

work 

nsure: S - the intrusion score 

1: Generate context set { X 1 , X 2 , . . . , X H } 
2: for i = 1 to epoch do 

3: for h = 1 to H do 

4: for k = 1 to K do 

5: X k 
h 

← T k ( X h ) 
6: end for 

7: X h ← 

[
X h ; X 1 

h 
; . . . x K 

h 

]
8: z _ en h ← T rans f or mer _ encoder ( X h ) ref. to Eq. (2) and Eq.(3) 

9: Calculate the S ref. to Eq.(9) 

0: end for 

11: end for 

ng order of the intrusion score and the part of the objects with 

he highest exception score are outliers. 

. Experiments 

In this section, we first introduce a detailed experiment setup 

hich includes the evaluation datasets, data preprocessing, com- 

arison methods, and evaluation metrics. Then we conduct the 

xperiments to demonstrate the effectiveness of the proposed 

UIDS, we evaluate the RUIDS and the state-of-the-art unsuper- 

ised anomaly detection methods on 4 datasets. Also, to show the 

obustness of our method, We test the performance of the algo- 

ithm when the training data had different levels of contamina- 

ion. And we do an ablation study to reveal the contributions of 

he two-loss function in RUIDS. Finally, we conduct the parame- 

er sensitivity test to show the effect of different hyperparameters 

ith respect to the performance. 

.1. Experiment setup 

.1.1. Datasets and evaluation metrics 

In our experiment, we deploy 4 datasets: KDDCUP, UNSW-NB15, 

ICIDS17-Friday, and CICIDS17-Wednesday. 

• KDDCUP: KDDCUP Chen et al. (2005) was extracted from 9 

weeks of network connectivity data collected in a network en- 

vironment established by Lincoln Laboratory to simulate the 

United States Air Force LAN. This dataset contains 41 feature 

vectors and the label value. In addition to normal data, there 

are 4 kinds of attack data that are marked as abnormal. This 

resulted in the abnormal rate high to 81%. In the experiments, 

we treat normal data as ’anomaly’ and attack data as ’normal’. 

• UNSW-NB15: The UNSW-NB15 dataset Moustafa and 

Slay (2015) was created through the IXIA PerfectStorm tool by 

the Network Scope Lab of the Australian Centre for Cyber Se- 

curity. This dataset contains 9 attack types. In the experiments, 

we mark all attack data samples as ’anomalies’. 

• CICIDS17: The CICIDS17 dataset Sharafaldin et al. (2018) con- 

tains benign and most common attacks, similar to real-world 
6

data. Different attacks were implemented in different time pe- 

riods in a specific way using network configuration files. This 

dataset contains multiple files, and in our experiments, we 

adopted the CICIDS17-Wed dataset and the CICIDS17-Fri dataset 

which are collected on Wednesday and Friday. These two files 

contain portscan and dos hulk attacks respectively. We mark 

data other than benign data as ’anomaly’. 

Detailed information about these datasets is shown in Table. 1 . 

he division of data in the experiment refers to the method of 

AGMM Zong et al. (2018) . We train baseline deep-learning meth- 

ds with 50 % of normal data, and the remaining normal data and 

bnormal data are used as the test dataset to test the detection ef- 

ect. Precision, recall, and F1-score are usually selected as the eval- 

ation metrics for unsupervised anomaly detection. In our experi- 

ent, we use the true number of anomalies of the test data as the 

hreshold for the algorithm to determine anomalies. This will re- 

ult in these three evaluation metrics of the algorithm being very 

lose. Considering the extremely unbalanced traffic categories in 

eal network scenarios, we add AUC (area under the receiver op- 

rating characteristic curve) as an experimental evaluation metric. 

inally, we use accuracy, F1-score, and AUC as evaluation metrics. 

.1.2. Comparison methods 

We consider traditional and deep learning anomaly detec- 

ion methods and also compare them with state-of-the-art self- 

upervised methods. 

• OC-SVM: By mapping the data to the feature space correspond- 

ing to the kernel, OC-SVM constructs a hyperplane between the 

data and the origin, which maximizes the distance from the hy- 

perplane to zero. 

• LOF: LOF(local outlier factor) Breunig et al. (20 0 0) is based on 

density to determine outliers. By assigning an outlier factor LOF 

that depends on the density of the neighborhood to each data 

point, it is then judged whether the data point is an outlier. 

• IF: Isolation Forest (iForest) Liu et al. (2012) is a fast outlier 

detection method based on ensemble, which utilizes a binary 

search tree structure called isolation tree (iTree) to isolate sam- 

ples. Due to the small number of outliers and their alienation 

from most of the samples, outliers will be isolated earlier. 

• DAGMM: DAGMM organically combines the dimensionality re- 

duction process and the density estimation process for end-to- 

end joint training. 

• Deep-SVDD: DEEP-SVDD uses a neural network to extract data 

features, and shrinks normal samples within the hypersphere 

(the center is C, the radius is R , and the center needs to be

determined in advance). Abnormal samples are far away from 

the hypersphere and fall outside the sphere. 

• GOAD: GOAD projects the data to different regions through 

some geometric transformations, and map these transformed 

data to a new sample space by training a neural network. Under 

the idea of one-class classification, each geometric transforma- 

tion subspace is mapped into a sphere. 

• NeuTraL AD: NeuTraL AD implements end-to-end anomaly 

detection using learnable transformations, which embed the 

transformed data into a semantic space where the transformed 
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data representation is similar to the original data representa- 

tion, and different transformations are easy to distinguish. 

Among the above several baseline methods, OC-SVM, LOF, and 

F methods are traditional machine learning methods. A testing set 

s used for model training in these three experiments since there 

re no anomalies in the training set. To get a better detection re- 

ult, we set the parameters of an algorithm according to the true 

roportion of the abnormal data. The last four baseline methods 

re deep-learning-based algorithms. In the DAGMM algorithm, the 

ncoder module uses three hidden layers to compress data samples 

nto 10 dimensions. The estimation network is a two-layer neu- 

al network and the output is the probability of belonging to nor- 

al and abnormal classes. The DEEP-SVDD algorithm compresses 

ata samples into a low-dimensional sphere, and the compressed 

pace of the KDDCUP dataset, UNSW-NB15 dataset, and CICIDS17 

atasets are 30, 40, and 20 dimensions, respectively. The GOAD 

lgorithm uses a 1-D convolution neural network to get different 

ransformation versions. The transformed data are mapped into a 

0-dimensional feature space for anomaly detection. The parame- 

ers of the NeuTraL AD neural network are the same as the trans- 

ormation module of the RUIDS system. The batch size of these 

etworks is 256 and the number of epoch is 30. Each algorithm 

s run 10 times, and the mean value is taken as the experimental 

esult. 

.1.3. Implementation details 

In order to compare with the previous excellent algo- 

ithms, we adopt the data processing method from Deng et al 

ong et al. (2018) . For the KDDCUP dataset and UNSW-NB15 

ataset, we perform one-hot processing on the categorical features, 

nd the processed feature dimensions become 121-dimensional 

nd 179-dimensional, respectively. For the CICIDS17 dataset, re- 

ove dirty data containing Nan and Infinity. For the division of 

he data set, we take half of the normal data as the training set 

nd take the addition normal data and all anomaly data as the test 

et. 

The RUIDS includes a transformer-based self-supervised learn- 

ng scheme and a masked context reconstruction module. In the 

elf-supervised learning scheme, we designed a learnable transfor- 

ation set with 11 different transformations. Each transformation 

s consist of 2 fully connected layers with RELU activations. The 

arameters of the two linear layers are FC (input_dimension, hid- 

en_dimension, RELU) and FC (hidden_dimension,input_dimension, 

ELU). 

In the masked context reconstruction process, we slice each 

ataset by taking C = 100 data objects as a context according to 

he original order. Last parts objects less than C are dropped. In 

ach context, we randomly sample r% of objects, and we set r = 90

n the experiment. The sample context changed the dimension 

hrough a linear layer before being put into the transformer-based 

ncoder module. The transformer embedding is followed by a nor- 

alization layer. In the masked context reconstruction module, the 

utput of the encoder and the positional embedding are spliced as 

he input of the decoder, which also consisted of a linear layer, a 

ransformer structure, and a normalization layer. The reconstruc- 

ions of masked samples are get from a linear layer after the out- 

ut of the transformer decoder. The network parameters of the 

hree different datasets are shown as Table. 2 . 

.2. The effectiveness of RUIDS 

The intrusion detection results on four datasets are demon- 

trated in Table 3 , which includes the accuracy, F1-score, and AUC 

alue performance. According to the table, our method achieves 

he best performance in terms of all metrics compared with all 

ther methods on all datasets. 
7 
Among the three traditional anomaly detection algorithms, the 

verall effect of the ONE-SVM algorithm is better than the LOF and 

F algorithms. This is because, in the process of algorithm imple- 

entation, the ONE-SVM algorithm learns a hyperplane based on 

ormal data, and the training data in our experiment is not doped 

ith abnormal data, which makes the hyperplane learned by the 

NE-SVM algorithm more efficient. The LOF algorithm needs to 

ompare with the surrounding data during the training process 

nd determine the abnormality of the data according to the set 

hreshold. The algorithm requires a low proportion of data anoma- 

ies, and the data sets except KDDCUP have a high proportion of 

nomalies in the experiment, resulting in poor detection results 

f the algorithm. The IF algorithm is also sensitive to the global 

parse points and is not good at dealing with local relatively sparse 

oints, and the result of detection for a dataset with a large num- 

er of abnormal data is not good. 

Overall, deep learning-based methods outperform traditional 

achine learning, which indicates that neural networks are more 

apable of extracting data features. Meanwhile, in these methods, 

e set precise thresholds for anomaly detection. For example, if 

he abnormal proportion in the test data is 20%, then we deter- 

ine that the 20% samples with the largest outliers are abnormal. 

his approach also improves the effect of detection. These detec- 

ion methods perform better on the KDD dataset than on the other 

hree datasets. This is because the other three datasets have a 

igher proportion of anomalies, and the UNSW-NB15 dataset with 

he highest proportion of anomalies has the worst detection effect. 

.3. The robustness of RUIDS 

At present, most of the unsupervised anomaly detection meth- 

ds based on deep learning with good effect need to use clean data 

or training to learn a better feature representation of normal data. 

hese methods put forward a high requirement for training data 

hat most or all of the training data be clean data. In practical ap- 

lications, we cannot determine the abnormality of training data, 

hich requires the algorithm of abnormality detection to be highly 

obust and insensitive to abnormal data. 

In experiments, we test the robustness of algorithms. We added 

%, 10%, 15%, 20%, 25%, and 30% of contamination data to the orig- 

nal clean training data respectively, and also reduced the added 

art in the corresponding test data. The results of deep-learning- 

ased algorithms with different degrees of abnormality are shown 

rom Fig. 3 to Fig. 6 . Compared with other algorithms, our algo- 

ithm has the highest robustness. As the proportion of contamina- 

ion data in the training data increases, although the performance 

f our algorithm declines, the declining trend is slower than other 

lgorithms. The performance of our algorithm is better than other 

lgorithms in the same training set. RUIDS system performs differ- 

ntly on different datasets. The best performance of our algorithm 

s shown on the KDD dataset. When the contamination data in- 

reases by 30%, the accuracy, F1-score, and the AUC of our algo- 

ithm only decrease by 1.3%, 4.4%, and 2.6%, respectively. The al- 

orithm has the worst effect on the UNSW-NB15 data set, which 

ay be due to the high abnormality proportion of the UNSW-NB15 

ataset itself. When 30% contamination data is added to the train- 

ng data, the accuracy, F1-score, and the AUC of the algorithm drop 

y 13.8% and 8.4%, and 22.2% respectively. 

Contrary to the RUIDS algorithm, the result of the DAGMM al- 

orithm drops mostly on the KDD dataset. The DAGMM algorithm 

eeds to map high-dimensional data to a low-dimensional space 

nd perform density estimation in the low-dimensional space. The 

lgorithm is sensitive to the distribution of the data set. In the low- 

imensional space, some abnormal objects are hidden in the nor- 

al objects, and the detection effect is reduced. As shown in Fig. 4 ,

he effect of the DEEP-SVDD algorithm on the UNSW-NB15 dataset 
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Table 2 

Implementation framework settings for different datasets . 

KDD UNSW-NB15 CICIDS17 

Transformation FC(121,60,RELU) FC(179,90,RELU) FC(78,40,RELU) 

FC(60,121,RELU) FC(90,179,RELU) FC(40,78,RELU) 

Reconstruction FC(121,60) FC(179,88) FC(78,40) 

Transformer Block(60) Transformer Block(88) Transformer Block(40) 

LayerNorm(60) LayerNorm(88) LayerNorm(40) 

FC(60,100) FC(88,160) FC(40,60) 

Transformer Block(100) Transformer Block(160) Transformer Block(60) 

LayerNorm(100) LayerNorm(160) LayerNorm(60) 

FC(100,121) FC(160,179) FC(60,78) 

Table 3 

The intrusion detection results with the state-of-the-art methods . 

KDD UNSW-NB15 CICIDS-WED CICIDS-FRI 

ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC 

ONE-SVM 0.8072 0.7734 0.8564 0.8271 0.8943 0.7031 0.7243 0.7809 0.7098 0.8563 0.9085 0.7493 

LOF 0.7555 0.6284 0.7231 0.2782 0.2070 0.5421 0.4418 0.1381 0.4884 0.2789 0.0973 0.4461 

IF 0.7801 0.7494 0.8361 0.8456 0.9129 0.5938 0.7094 0.7719 0.6937 0.7961 0.8750 0.6442 

DAGMM 0.9071 0.8589 0.9679 0.7718 0.8592 0.7542 0.6512 0.6738 0.6453 0.7479 0.8224 0.7096 

DEEP-SVDD 0.9911 0.9866 0.9900 0.7622 0.8532 0.6139 0.8842 0.8916 0.8838 0.9022 0.9314 0.8803 

GOAD 0.9900 0.9848 0.9887 0.8551 0.9106 0.7647 0.7376 0.7551 0.7362 0.9586 0.9710 0.9493 

NeuTraL AD 0.9973 0.9959 0.9969 0.8813 0.9267 0.8072 0.8949 0.9017 0.8944 0.9829 0.9880 0.9791 

RUIDS 0.9998 0.9997 0.9997 0.9262 0.9544 0.8802 0.9802 0.9815 0.9801 0.9939 0.9957 0.9925 

Fig. 3. The detection results on KDDCUP dataset with different abnormal proportion. 

Fig. 4. The detection results on UNSW-NB15 dataset with different abnormal proportion. 

Fig. 5. The detection results on CICIDS-WED dataset with different abnormal proportion. 

8 
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Fig. 6. The detection results on CICIDS-FRI dataset with different abnormal proportion. 

Table 4 

The intrusion detection results with different loss function . 

KDD UNSW-NB15 CICIDS-WED CICIDS-FRI 

ACC F1 AUC ACC F1 AUC ACC F1 AUC ACC F1 AUC 

RUIDS 0.9998 0.9997 0.9997 0.9262 0.9544 0.8802 0.9802 0.9815 0.9801 0.9939 0.9957 0.9925 

Only contrastive loss 0.9995 0.9984 0.9990 0.8146 0.8839 0.7121 0.8848 0.8745 0.8840 0.9601 0.9712 0.9594 

Only reconstruction loss 0.8031 0.3840 0.6334 0.8314 0.8944 0.7382 0.7720 0.7515 0.7704 0.7652 0.8290 0.7272 
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s always poor, and the effect on the other three datasets decreases 

ignificantly with the increase of contamination objects. The effect 

f the GOAD algorithm on the KDDCUP dataset decreased slow- 

st and decreased to varying degrees on other datasets. The Neu- 

ral AD algorithm has the worst effect on the CICIDS-WED dataset. 

hen the proportion of contamination data increases to 20%, it is 

ifficult for the algorithm to effectively detect anomalies. 

.4. Ablation study 

The loss function of the RUIDS algorithm consists of two parts, 

hich are the transformer-based self-supervised contrastive loss 

nd the masked context reconstruction loss. To verify the effec- 

iveness of these two loss functions, we conducted a comparative 

xperiment. In the experiment, we set the anomaly ratio of the 

raining data set to 30% and tested the performance of the algo- 

ithm with only one of the loss functions, and with both loss func- 

ions as Table. 4 shows. 

Through experiments, we found that results on the four 

atasets proved that the performance with both loss functions con- 

idered is better than the performance with only one loss function. 

e can say that both loss functions have a positive impact on the 

erformance of the algorithm. The performance of the algorithm 

as been significantly reduced if there is only reconstruction loss 

n KDD, CICIDS-WED, and CICIDS-FRI datasets. It means that con- 

rastive loss plays a more important impact than reconstruction 

oss on these three datasets. On the UNSW-NB15 dataset, the re- 

onstruction loss has a greater effect on the performance of the 

lgorithm than the contrastive loss. Different anomaly proportions 
Fig. 7. The RUIDS detection result

9 
f datasets result in different sensitivity to the two loss functions. 

or datasets with a high proportion of abnormality, the improve- 

ent effect of reconstruction loss is more obvious. For datasets 

ith a low proportion of abnormality, the improvement effect of 

ontrastive loss is better than reconstruction loss. 

.5. Parameter sensitivity test 

To enhance the robustness of the RUIDS algorithm, we mask 

ome objects in one context. Masked contexts are reconstructed 

hrough a one-layer transformer decoder structure. We test the im- 

act of mask scale size on the experiment results. Fig. 7 shows the 

ffect with different mask ratios on four datasets. 

The experimental results show that with the increase of the 

ask ratio, the performance of the algorithm decreases to dif- 

erent degrees. For the KDD and UNSW-NB15 datasets, the effect 

n the performance of the algorithm with different mask ratios 

s almost negligible when the ratio is less than 0.6. The perfor- 

ance decreases linearly with the increase of mask ratio if the 

ask ratio is higher than 0.6. For the CICIDS-WED and CICIDS-FRI 

atasets, the performance of the algorithm decreases with the in- 

rease of the mask ratio, and the downward trend is increasing. 

he loss function of the algorithm consists of two parts: masked 

ontext reconstruction loss and transformer-based contrastive loss. 

he masked context reconstruction loss is calculated by recon- 

tructing the masked context, and the contrastive loss is calcu- 

ated by the unmasked context. As the mask ratio increases, the 

asked context reconstruction loss has a bigger impact on the al- 
s with different mask ratio. 
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Fig. 8. The RUIDS detection results with different α. 

Fig. 9. The RUIDS detection results with different context sizes. 
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orithm loss. This is corroborated by the contribution of these two 

oss functions discussed earlier. 

Our algorithm consists of a self-supervised scheme and a 

asked context reconstruction module, each corresponding to a 

oss function. In the previous discussion, we tested that both loss 

unctions have a positive effect on the final performance improve- 

ent of the algorithm. The loss is L = L con + αL rec we test the in-

uence of performances with different α values on four datasets. 

he results are shown in Fig. 8 . We can find that the value of α
as little effect on the overall algorithm. Compared with the self- 

upervised learning loss, the masked reconstruction loss has less 

nfluence on the overall loss function. This also confirms the previ- 

us results on the contributions of different losses. 

In our experiment, we slice the intrusion data into contexts for 

rocessing. We set the size of the context C = 100 in previous tests.

ow we test the impact of context size on performance and the re- 

ult is shown as Fig. 9 . The size of the context hardly has any effect

n the KDD dataset. On the CICID-WED and CICIDS-FRI data sets, 

he detection performance increases with the size of the context 

ncrease. The test performance is negatively related to the context 

ize on the UNSW-NB15 data set. 

. Conclusion 

The network intrusion detection system is very important to 

etwork security. Unsupervised intrusion detection methods that 

o not require labeling data solve the problems of high man- 

al labeling costs and data contamination. In this work, we pro- 

osed a robust unsupervised intrusion detection system,i.e, RUIDS, 

y introducing masked context reconstruction into a transformer- 

ased self-supervised learning scheme. The transformer-based self- 

upervised scheme is designed to learn the intrinsic relationship 

ithin contexts by a set of learnable transformations and a one- 
10 
ayer transformer encoder module. The masked context reconstruc- 

ion module can learn more discriminative representations which 

agnify the abnormal intrusion behaviors through a transformer 

ecoder module. By applying the RUIDS scheme to 4 datasets, the 

uperior performance shows its effectiveness and robustness. The 

horough ablation study approves that the self-supervised learning 

cheme and mask context reconstruction module both contribute 

o intrusion detection. 
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