
Unsupervised Hierarchical Graph Pooling via
Substructure-Sensitive Mutual Information Maximization

Ning Liu

liuning17a@nudt.edu.cn

National University of Defense Technology

Changsha, China

Songlei Jian
∗

jiansonglei@nudt.edu.cn

National University of Defense Technology

Changsha, China

Dongsheng Li
∗

dsli@nudt.edu.cn

National University of Defense Technology

Changsha, China

Hongzuo Xu

xuhongzuo13@nudt.edu.cn

National University of Defense Technology

Changsha, China

ABSTRACT
Graph pooling plays a vital role in learning graph embeddings. Due

to the lack of label information, unsupervised graph pooling has

received much attention, primarily via mutual information (MI).

However, most existing MI-based pooling methods only preserve

node features while overlooking the hierarchical substructural in-

formation. In this paper, we propose SMIP, a novel unsupervised hi-

erarchical graph poolingmethod based on substructure-sensitiveMI

maximization. SMIP reconstructs a hard-style substructure encoder

based on cluster-based pooling paradigm, and trains it with two

substructure-sensitive MI-based objectives, i.e., node-substructure

MI and node-node MI. The node-substructure MI guides to transfer

maximum node feature information into corresponded substruc-

tures and the node-node MI guarantees a more accurate node allo-

cation. Moreover, to avoid extra computation of augmented graphs

and prevent noise information during MI estimation, we propose a

local-scope contrastive MI estimation method, making SMIP more

potent in capturing intrinsic features of the input graph. Experi-

ments on six benchmark graph classification datasets demonstrate

that our hierarchical deep learning approach outperforms all state-

of-the-art unsupervised GNN-based methods and even surpasses

the performance of nine supervised ones. Generalization study

shows that the proposed substructure-sensitive MI objective can be

successfully embedded into other cluster-based pooling methods

to improve their performance.

CCS CONCEPTS
• Information systems→ Data mining.

KEYWORDS
unsupervised graph representation learning, graph pooling

∗
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00

https://doi.org/10.1145/3511808.3557485

ACM Reference Format:
Ning Liu, Songlei Jian, Dongsheng Li, and Hongzuo Xu. 2022. Unsupervised

Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information

Maximization. In Proceedings of the 31st ACM International Conference on
Information and Knowledge Management (CIKM ’22), October 17–21, 2022,
Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3511808.3557485

1 INTRODUCTION
Graphs, providing explicit dependencies among nodes, have been

proven to be an effective way to achieve reliable analysis for diverse

data types. Currently, Graph Neural Networks (GNNs) [21] have

made remarkable strides in learning node embeddings for graph-

structured data to perform tasks such as node classification [39]

and link prediction [33]. However, it remains a challenging research

problem to combine GNNs with deterministic graph pooling strat-

egy to learn graph embeddings for graph-level tasks, such as graph

classification [44] and graph isomorphism [42]. Although there

have been a myriad of successful supervised graph pooling meth-

ods, an obvious obstacle is the heavy reliance on additional graph

labels, which is expensive to acquire by manual annotation. Hence,

unsupervised graph pooling, which aims to learn effective graph

embeddings based on a large amount of unlabeled graph-structured

data, is of great practical value.

Recently, inspired by the InfoMax principle [25], there have been

explosive interests in explorations of unsupervised graph pool-

ing based on mutual information (MI). In general, most existing

MI-based graph pooling methods [10, 15, 36, 40] design an MI-

maximization objective between node embeddings obtained from

GNNs and a graph embedding summarized from a readout func-

tion (e.g., element-wise sum), where MI measures the dependency

between the two variables. Generally speaking, the higher the MI

value, the lower the uncertainty of graph embedding given node

embeddings, the better the graph embedding quality. Although

achieving competitive results compared with other unsupervised

approaches, current MI-based graph pooling methods have an ob-

vious drawback, they lose the completeness of graph hierarchical

substructural information. Maximizing the node-graph MI has been

proved in [36] to be equivalent to distill information from the in-

put node features into hidden vectors. As a result, these methods

over-emphasize individual feature information of nodes within

a graph but completely neglect hierarchical substructural infor-

mation. However, hierarchical substructures are widespread and

https://orcid.org/0000-0002-8966-7869
https://doi.org/10.1145/3511808.3557485
https://doi.org/10.1145/3511808.3557485
https://doi.org/10.1145/3511808.3557485

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Ning Liu, Songlei Jian, Dongsheng Li, & Hongzuo Xu

contain abundant information in real-world graphs. For example,

polymerized high molecular compound is a typically hierarchical

graph in material science, in which a monomer is formed by bond-

ing atoms, and then large molecules result from the simultaneous

polymerisation of two or more monomer units.

To overcome the above drawback, in this work, we propose a

novel unsupervised hierarchical graph pooling method based on

substructure-sensitive MI maximization to obtain more accurate

embeddings of graphs, named SMIP. To this end, we consider graph

pooling as a node clustering problem and train a substructure en-

coder reconstructed from cluster-based pooling paradigm. Specifi-

cally, we reconstruct the learnable soft node assign matrix in a hard

style to prevent blending less important nodes which are actually

noise into substructures. Moreover, we interpret the node assign

matrix which is commonly recognized as an assignment probability

matrix from a new perspective as a bridge matrix which offers direct

feature connection between nodes and substructures. To optimize

the substructure encoder for high-quality coarse-grained graph

embeddings, we propose node-substructure MI that helps to inherit

individual node features into substructures as much as possible

based on the assumption that nodes are already allocated to proper

substructures. Further, for a more accurate node allocation relation-

ship, we propose node-node MI based on node features getting from

the bridge feature matrix to guarantee that nodes allocated to the

same cluster be highly correlated with similar features. To achieve

MI estimation, we apply contrastive learning. However, classical

contrastive method usually requires extra graph augmentation to

provide negative samples, which wastes computing resources and

introduces noise information from augmented graphs. To better

distill the intrinsic features of graphs, we propose a local-scope con-

trastive learning strategy that generates negative samples within

the local scope of the input graph, thus avoiding data augmentation.

The main contributions can be summarized as follows:

• We propose SMIP, an unsupervised MI-based hierarchical

graph pooling method that can preserve both individual

node features and hierarchical substructural information to

obtain high-quality graph embeddings.

• We propose node-substructure MI ad node-node MI, two

substructure-sensitive MI-based unsupervised objective that

can be incorporated into any pooling methods that follow

the cluster-based pooling paradigm.

• We propose a local-scope contrastive learning strategy for

MI estimation, which helps to save computing resources and

discard external disturbance from augmented graphs, mak-

ing our model more powerful in capturing intrinsic features

of the input graph.

Experiments on six graph classification benchmarks demonstrate

that SMIP is superior to nine state-of-the-art unsupervised com-

petitors with an average improvement of 6.83%, and even exceeds

nine supervised baselines. The generalization study shows that our

proposed substructure-sensitive MI-based objective can be seam-

lessly embedded into existing cluster-based pooling methods and

significantly improve their performance.

2 RELATEDWORK
2.1 Unsupervised Graph Pooling
Unsupervised graph pooling is an important research field with a

long history. Graph kernels [22, 31, 34, 35, 43] is a form of classic

unsupervised methods specifically established for solving graph

classification tasks using particular similarity measures—kernels.

However, the theoretical properties of graph kernels lead to their

suitability and specialization to a particular classification domain.

Besides, implicit graph vectors in fixed feature space render an

unavoidable barrier for the utilization of ML algorithms. Another

typical approach is shallow learning-based methods built upon

fixed-length random walks, such as node2vec [13], sub2vec [1] and

graph2vec [28]. However, these methods only focus on refining the

lowest-level node information reflected in the neighborhood but

ignore the optimization of graph embedding correlated with coarse-

grained structural information. Recently, with the great success

of deep learning and GNNs, significant effort has been devoted to

designing GNN-based graph representation learning methods in an

unsupervised fashion. UGRAPHEMB [2] learns graph embeddings

under existing graph proximity metric, e.g., Graph Edit Distance

(GED) [11], which is expensive to acquire through high computa-

tional complexity algorithms. StructPool [45], MinCutPool [4] and

OTCOARSENING [27] formulate graph pooling as a node cluster-

ing problem by aggregating nodes into multiple clusters as new

nodes constrained by mincut loss, conditional random fields (CRFs),

and optimal transport, respectively. They do not require extra prior

knowledge but might not obtain sufficient performance when hier-

archically coarsen the graph representations. This is because graphs

after one coarsening operation become fully connected, then the

mincut loss in MinCutPool and pairwise energy loss defined by

l-hop connectivity in StrucPool both fail. More recently, InfoGraph

[36], MVGRL [15], LGR [41], CuCo [8] and UHGR [10] are pro-

posed to produce some new forms of formulation by generalizing

the conventional mutual information (MI) estimation to the graph

domain. Although achieving state-of-the-art graph classification

results, they neglect the hierarchical substructural information.

2.2 Mutual Information Neural Estimation
MI estimation is intensively studied by the community in unsuper-

vised learning of features since the InfoMax [25] principle is shown

to be effective. MI is historically difficult to compute, especially for

general-purpose continuous variables in deep neural networks. For-

tunately, Mutual Information Neural Estimation (MINE) [3] allows

for MI lower-bound estimation between high dimensional contin-

uous random variables by training a statistics network through

contrastive learning. The presentation of MINE has encouraged the

research of a wide variety of deep models to resolve tasks based

on MI maximization. Deep InfoMax (DIM) [16] employs MI maxi-

mization between local patches (i.e., hidden vectors) and high-level

image representation. Deep Graph Infomax (DGI) [40] and Info-

Graph [36] follow the intuition from DIM to graph domain with MI

maximization between node representations and the graph-level

representation summarized by a readout function. Specifically, DGI

requires generating a corrupted graph to obtain negative samples.

GMI [30] abandons the potentially harmful readout and corrupted

function. Instead, it defines the MI maximization in a node-wise

Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information Maximization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Bridge
Matrix

Substructure	Encoder

Node	
Assign

Substructure	
Formation

1 0
1 0
0 1
0 1
0 1
0 1

A
B
C
D
E
F

A′		B′	

𝑺
𝑩

𝑿′

Input	Graph Node	Encoder

𝑯

Local-Scope	Node-Node	MI
𝑯 𝑩

𝒟*

Positive	Pair Negative	Pair

𝒟*

Local-Scope	Node-Substructure	MI
𝑯 𝑿′

𝒟*

Positive	Pair Negative	Pair

𝒟*

Substructure-Sensitive	MI	Estimation
SMIP	

𝑿

Substructure	
Formation

Figure 1: An illustration of the SMIP layer.

form between nodes and the selected l-hop neighbors. Apart from

MINE, InfoNCE [38] is another MI lower bound neural estimation

method based on Noise Contrastive Estimation [14]. Besides, re-

searchers have recently proposed an upper-bound neural estimation

method CLUB [7] for MI minimization tasks.

3 THE PROPOSED METHOD: SMIP
In this section, we first introduce preliminaries of unsupervised

graph pooling. Then we formalize a substructure encoder recon-

structed from cluster-based pooling paradigm. Subsequently, we

introduce the substructure-sensitive MI maximization objectives

used for training the substructure encoder and provide theoretical

analysis. After that, we will describe the local-scope contrastive

learning strategy for MI estimation. Finally, we provide a computa-

tional complexity analysis for the training process of the substruc-

ture encoder. An illustration of an integrated SMIP layer is given

in Figure1.

3.1 Preliminaries
3.1.1 Input Graph. An undirected graph can be represented as

a tuple G = {V, E}, with V = {𝑣𝑖 }𝑖={1,· · · ,𝑁 } denoting the set

of nodes, and 𝑒𝑖 𝑗 ∈ E indicating the edge link between node 𝑣𝑖
and 𝑣 𝑗 . Suppose that each node is attached with a 𝐷-dimensional

feature vector which is initialized as the one-hot encoding of node

types or node degrees, then the node feature matrix can be given

by X ∈ R𝑁×𝐷 = {𝑥1, · · · , 𝑥𝑁 }, which is full column rank. The

adjacent matrix A ∈ R𝑁×𝑁
is a symmetric matrix which reveals

edge connections. A𝑖, 𝑗 = 1 if there is an edge between node 𝑖 and

node 𝑗 . It may also be arbitrary real numbers report both structural

information and edge weights.

3.1.2 Node Encoder. we adopt l-layer GNNs as node encoder and
employ a multi-layer node embedding concatenation as the output

node embedding matrix. Assume that the output dimension of a

node encoder is 𝐷′
, then the final output of a l-layer node encoder

will be given by H ∈ R𝑁×𝐷 ′
= {ℎ1, · · · , ℎ𝑁 }, where 𝐷′ = 𝑙𝐷 . For

simplicity, we overlook the intermediate stage and useH = Θ(A,X)
as the denotation of arbitrary l-layer node encoder function Θ(·, ·)
fed with an adjacent matrix A and input node feature matrix X.

3.1.3 Unsupervised Graph Pooling. Given a set of graphs G =

{G1,G2, · · · } accompanied with node features X = {X1,X2, · · · }, a
node encoder Θ(A,X) → H takes the node feature matrix X and

adjacent matrix A as input, and outputs a node embedding matrix

H ∈ R𝑁×𝐷 ′
. Then, unsupervised graph pooling method performs

as a downsampling strategy to find a compressed representation

of a graph as a single point in representation space with no pre-

determined graph label information. In this paper, we perform

graph pooling as a substructure encoder and train this encoder via

substructure-sensitive MI maximization objectives.

3.2 Substructure Encoder
Cluster-based pooling that captures the local substructures of a

graph has received intensive study since the presentation of Diff-

Pool [44]. Recently, cluster-based method which can usually be

separated into node assign stage and substructure formation stage

becomes a research branch of graph pooling and has achieved a

large improvement [4, 26, 32, 45]. Here we attempt to reconstruct

a substructure encoder based on commonly used cluster-based

pooling paradigm and interpret it from a new perspective.

3.2.1 Node Assign Stage. Node assign stage aims to allocate 𝑁

nodes in the original graph into 𝑁 ′
coarse-grained substructures

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Ning Liu, Songlei Jian, Dongsheng Li, & Hongzuo Xu

where 𝑁 > 𝑁 ′
, thus forming a allocation relationship between

nodes and substructures. It takes the node embedding matrix H ∈
R𝑁×𝐷 ′

as input and learns a node assign matrix B ∈ R𝑁×𝑁 ′

through an assign function 𝑓 (·) with learnable parameters W ∈
R𝐷

′×𝑁 ′
. There are a number of options of assign functions, such

as GNNs [44, 45], attention mechanism [26] or MLP [4]:

B = 𝑓 (H) (1)

3.2.2 Substructure Formation Stage. Substructure Formation stage

aims to aggregate node features into substructures according to the

allocation relationships obtained through node assign stage. It takes

the node feature matrix X and the node assign matrix B as input,

then generates a substructure embedding matrix X′ ∈ R𝑁 ′×𝐷 ′
and

a new adjacent matrix A′ ∈ R𝑁 ′×𝑁 ′
for the coarse-grained graph.

Substructures will be regarded as nodes in the coarse-grained graph:

X′ = B⊤X, (2)

A′ = B⊤AB. (3)

3.2.3 Reconstruction-(i): Bridge Matrix. The trainable node assign
matrix B is usually recognized as an assignment probability matrix,

where each element B𝑖, 𝑗 ∈ R indicates the probability that node 𝑖

is allocated to substructure 𝑗 . In this paper, we interpret it from a

new perspective and view it as a feature matrix, where each row

B(i,·) ∈ R𝑁
′
can be regarded as node feature with dimension 𝑁 ′

in

the original graph, and each column B(·,j) ∈ R𝑁 can be regarded

as substructure feature with dimension 𝑁 in the coarse-grained

graph. We term it as a bridge matrix which can offer learnable fea-

ture connection between the original graph and the coarse-grained

graph. In this sense, it converges both the original graph and the

coarse-grained graph on a united feature matrix, thus achieving

relative stability between information from the original graph and

the coarsened graph.

3.2.4 Reconstruction-(ii): Hard Assign. It should be noted that the

node assign stage is usually in a soft style, where nodes and substruc-

tures are mapped in an all-to-all manner with different assignment

probabilities. However, less critical nodes with lower assignment

probabilities are actually “fake" members introducing noise to the

coarsened substructure. To address this, we reconstruct the soft

bridge matrix B into a hard-assign matrix S ∈ R𝑁×𝑁 ′
through

Gumbel-SoftMax [19], thus maintaining the more important “real"

member in substuctures.

S𝑖, 𝑗 =
exp

((
logB𝑖, 𝑗 + g𝑖, 𝑗

)
/𝜏
)∑𝑁 ′

𝑘=1
exp

((
logB𝑖,𝑘 + g𝑖,𝑘

)
/𝜏
) (4)

where g = − log (− log (u)) and u ∼ Uniform (0, 1). We set the soft-

max temperature parameter 𝜏 = 0.1 to make the cluster assignment

close to one-hot.

After being processed by bridge matrix and the hard assign

operation, the reconstructed substructure encoder can be defined

as follows:

Definition 3.1 (Substructure Encoder). Based on the original
cluster-based pooling paradigm, reconstruct the node assign stage
with a hard sampling function. The reconstructed node assign stage
takes node embedding matrix H ∈ R𝑁×𝐷 ′

as input and learns a soft

bridge matrix 𝐵 ∈ R𝑁×𝑁 ′
. Then process the bridge matrix through

Gumbel-Softmax function to obtain a hard-assign matrix S ∈ R𝑁×𝑁 ′
,

s.t. S𝑖 𝑗 = 1, iff node 𝑖 in the original graph is allocated to substructure
𝑗 in the coarse-grained graph. Then substructure formation stage
aggregates node features into substructures based on the hard-assign
matrix S:

B = 𝑓 (H), (5)

S = 𝑔(B), S𝑖 𝑗 =
{
1, 𝑖 ∈ 𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (𝑗)
0, 𝑖 ∉ 𝑠𝑢𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 (𝑗) (6)

X′ = S⊤X, (7)

A′ = S⊤AS. (8)

For simplicity, we overlook the intermediate stage and useX′,A′ =
Φ(H) as the denotation of the reconstructed substructure encoder

function Φ(·) fed with an the node embedding matrix matrix H.

3.3 Substructure-Sensitive MI
In this section, we propose two MI-basd substructure-sensitive

objectives to train the substructure encoder.

3.3.1 Node-Substructure MI. Inspired by InfoMax principle [25],

which states that optimizing MI between the input and output

variables helps to preserve maximum information about the input,

we propose node-substructure MI that maximizes the information

preservation between the input and output (i.e., node embeddings

and substructure embeddings) of the substructure encoder:

Definition 3.2 (Node-substructure MI). Given node encoder
Θ(A,X), learn a proper set of parameters W for the substructure en-
coder Φ(H), maximizing the mutual information I (H;X′) between
node embeddings acquired from the node embedding matrix H and a
substructure embedding acquired from the substructure embedding
matrixX′ only when nodes are allocated to this substructure according
to the hard-assign matrix S.

It seems that node-substructure MI and the previously proposed

node-graph MI are different only in the comparison granularity,

where the former is calculated between node and substructure em-

beddings while the latter between node and graph embeddings.

However, there are other several important differences between

them. First, node-substructure MI is substructure-sensitive which

seeks to obtain substructure embeddings that reserve comprehen-

sive information fromnodes.While node-graphMI is node-sensitive

which seeks to obtain node embeddings that capture the global in-

formation of the entire graph [40]. Second, node-substructure MI

can capture high-order dependency between nodes based on global

topology while node-graph MI only maintains neighborhood infor-

mation based on local topology.

3.3.2 Node-Node MI. The node-substructure MI objective can be

used to maximize the mutual information between node embed-

dings and substructure embeddings, thus transferring maximum

node information into substructures. In this sense, node-substructure

MI is benefit for the substructure formation stage which is actually a

node information aggregator. However, according to the processing

sequence of the reconstructed substructure encoder, the substruc-

ture formation stage follows after the node assign stage. As a result,

Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information Maximization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

the effectiveness of node-substructure MI is based on the assump-

tion that nodes are already allocated to proper substructures, which

is actually not guaranteed due to the lack of specific constraint.

Hence, we propose node-node MI to provide such a constraint:

Definition 3.3 (node-node MI). Given node encoder Θ(A,X),
learn a proper set of parametersW for the substructure encoder Φ(H),
maximizing the mutual information I (H;B) between node embed-
dings acquired from the node embedding matrix H and node features
acquired from the bridge matrix B only when these nodes are allocated
to the same substructure according to the hard-assign matrix S.

Node-node MI is substructure-sensitive both theoretically and

practically. Theoretically, node-node MI maximization can maxi-

mize the mutual dependency between node embeddings within the

scope of the same substructure, which is equivalent to maximizing

the shared information between nodes. This is consistent with the

findings in [45] and [4] that nodes belong to the same substructure

are strongly connected with similar features. Practically, instead of

calculating MI between pairwise node embeddings both obtained

from the node embedding matrix H, the pairwise node-node MI

is defined between node embeddings obtained from H and node

features obtained from the learnable bridge matrix B. This imple-

mentation is based on our novel interpretation of the trainable

bridge matrix B that rows of B can be regarded as node features.

Ideally, when two nodes are allocated to the same substructure,

corresponding rows in bridge matrix B are totally the same, which

also means that the two nodes have the same node features. This

implementation helps to transfer the focus of optimization from

the quality of individual node embeddings to the quality of node-

substructure allocation, where the latter is substructure-sensitive.

3.3.3 Theoretical Analysis. According to InfoMax principle [25],

the effectiveness of node-substructureMII(H;X′) is obvious. Hence,
we only prove the effectiveness of node-node MI I(H;B):

Proof. According to Equation(7), Mutual information I (H;X′)
can be denoted as follows:

I
(
H;X′) = I

(
H; S⊤X

)
= 𝐻 (H) − 𝐻 (H|S⊤X) (9)

Since X is a non-zero constant matrix with full column rank, then

we have:

𝐻 (H|S⊤X) = 𝐻 (H|S⊤) = 𝐻 (H|S) (10)

As a result, we get:

I
(
H;X′) = 𝐻 (H) − 𝐻 (H|S) = I (H; S) (11)

This proves that maximizing I (H;X′) is equivalent to maximiz-

ing I(H; S). In our feedforward network structure, H → B → S
is a Markov chain. According to Data Processing Inequality [9],

I(H;B) ≥ I(H; S), which means that the amount of information

maintained fromH decreases during the feedforward process. How-

ever, we hope that each feedfordward layer can preserve as much

information about H as possible, and we can maximize I(H;B) to
achieve this. As a result, the node-node MI I(H;B) is effective. □

3.4 Local-Scope Contrastive MI Estimation
Given a input graph dataset G = {G1,G2, · · · }, our training ob-

jective is to maximize the average node-substructure MI I(H;X′)

and node-node MI I(H;B) of all graphs to optimize the parameter

matrixW for substructure encoder:

(Ŵ1, Ŵ2) = argmax

W1,W2

1

|G|

| G |∑︁
𝑖=1

(
𝛼 ˆIW1

(H𝑖 ;X′
𝑖) + 𝛽 ˆIW2

(H𝑖 ;B𝑖)
)
(12)

where W1 and W2 are substructure encoder parameters for the

node-substructure MI and node-node MI objectives, respectively. 𝛼

and 𝛽 are hyper parameters.

We combine MINE [3] with infoNCE [38] to estimate MI through

Jensen-Shannon divergence (JSD) [29] based on positive and nega-

tive sample pairs in a self-supervised contrastive learning method.

Take the estimation of node-substructure MI I(H𝑖 ;X′
𝑖) for graph

G𝑖 as an example:

ˆIW1,Ω (H𝑖 ;X′
𝑖) =

1

N𝑝𝑜𝑠 + N𝑛𝑒𝑔

©«
N𝑝𝑜𝑠∑︁
𝑗=1

E(X𝑖 ,A𝑖) [−𝑠𝑝 (−DΩ (ℎ, 𝑥 ′) 𝑗)]

−
N𝑛𝑒𝑔∑︁
𝑘=1

E(X𝑖 ,A𝑖) [𝑠𝑝 (DΩ (˜ℎ, ˜𝑥 ′)𝑘)]
ª®¬ (13)

where DΩ with parameters Ω is a contrastive statistics network

takes (node, substructure) pairs as input to determine whether the

node belongs to the substructure. 𝑠𝑝 (𝑧) = log(1+𝑒𝑧) is the softplus
function. N𝑝𝑜𝑠 and N𝑛𝑒𝑔 correspond to the number of positive and

negative (node, substructure) pairs, respectively.

According to the hard-assign matrix S, we generate negative

(node, substructure) pairs by combining nodes with those substruc-

tures that they are not allocated to. Similarly, we generate negative

(node, node) samples by pairing nodes that are not allocated to the

same substructure. In this way, no graph argumentation is needed,

all negative pairs are sampled within the local scope of the input

graph, we call it a local-scope contrastive learning strategy.

This straightforward but effective local-scope contrastive learn-

ing strategy has three advantages: (1) It is free from extra com-

putation of graph augmentation. This promotes the accuracy of

self-concerned graph embedding and makes it more potent in cap-

turing intrinsic features of the input graph; (2) It provides suffi-

cient negative samples for contrastive learning, making PB and PX′

to be more competitive to approximate the true distribution PH,
thus maintaining the feature consistency during pooling; and (3) It

strictly avoids overlapping between positive and negative pairs by

the constraint of the hard-assign matrix S, thus eliminating noisy

pairs that influence the discriminate of the statistics network.

3.5 Computational Complexity Analysis
Here, we analyze the time complexity of SMIP to train a substruc-

ture encoder for graph G. Section 3.4 mentions that MI estimation

of SMIP relies on abundant negative samples far more than posi-

tive samples. Accordingly, the time cost for MI estimation mainly

depends on the discrimination of negative (node, substructure) and

(node, node) pairs. As we have discussed in Section 3.4, SMIP uses

a local-scope contrastive fashion to generate all possible negative

samples, so that negative (node, substructure) and (node, node)

pairs for graph G are of order of magnitude of 𝑁𝑁 ′
and 𝑁 2

, re-

spectively. Based on node-node and node-substructure MI, the total

time complexity for training cluster assignment encoder is O(𝑁 2).

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Ning Liu, Songlei Jian, Dongsheng Li, & Hongzuo Xu

A

C D

E

B

G
F

Node
Encoder

SMIP
Layer

Node
Encoder

Readout
Readout

Readout ⨁

Graph
Embedding

Input Graph

SMIP
Layer

Figure 2: The hierarchical graph representation learning architecture based on SMIP.

Specifically, when properly reduce the number of negative samples,

the time complexity could even be decreased to O(𝑁).

4 EXPERIMENTS
In this section, we attempt to answer the following questions:

• Q1: How does SMIP perform in graph classification com-

pared with unsupervised and supervised competitors? (Sec-

tion 4.2)

• Q2: How does the substructure-sensitive MI objective of

SMIP help to improve other cluster-based pooling methods?

(Section 4.3)

• Q3: Does SMIP lead to better clustering interpretability than

other cluster-based pooling methods? (Section 4.4)

• Q4: How do the hyperparameters influence the performance

of SMIP? (Section 4.5)

4.1 Experimental setup
4.1.1 Datasets. We evaluate our proposed SMIP on six real-world

benchmark datasets, including two social network datasets: IMDB-

B and IMDB-M [43], three molecules datasets: MUTAG, PTC [5] and

HIV [17], and one protein graph dataset: PROTEINS [6]. The largest

dataset, HIV, has 41127 graphs. Complete statistics and properties

of them are summarized in Table 1.

Bioinformatic datasets. MUTAG is a dataset of 188 mutagen

graphs with 7 discrete node labels. Graph label denotes whether

a molecule is a mutagen or non-mutagen. PTC is a dataset of 344

chemical compounds with 19 discrete node labels. Graph label de-

notes whether it can cause cancerous changes for rats. PROTEINS

is a dataset of 1113 protein graphs where nodes are secondary struc-

ture elements and two nodes are connected by an edge if they are

neighbors in the amino-acid sequence or in 3D space. It has 3 dis-

crete node labels, and graph labels denotes whether or not a protein

is a non-enzyme. HIV is a dataset of 41127 molecular graphs.

Social network datasets. IMDB-B is a movie collaboration dataset

of 1000 ego-networks where unlabeled nodes are actors/actresses

and there is an edge between them if they have a cooperation in the

same movie. Graph labels denotes whether the genre for each graph

is Action or Romance. IMDB-M is multi-class version of IMDB-B

with 1500 movie ego-networks derived from Comedy, Romance

and Sci-Fi genres.

For bioinformatic datasets (i.e., MUTAG, PTC, PROTEINS, and

HIV), nodes have categorical input features. However, for social

network datasets (i.e., IMDB-B and IMDB-M), no node features are

attached. We use the one-hot encoding of degrees as the input node

feature.

Table 1: Statistics and properties of six benchmark datasets
used in experiments.

Dataset
IMDB-B IMDB-M MUTAG PTC PROTEINS HIV

#Graphs 1000 1500 188 344 1113 41127

#Classes 2 3 2 2 2 2

#Max Nodes 136 89 28 109 620 222

#Min Nodes 12 7 10 2 4 2

#Avg Nodes 20 13 18 14 39 26

4.1.2 Baselines. SMIP achieves unsupervised graph pooling via

maximizing node-node MI and node-substructure MI. We term

the variants with node-node, node-substructure, and combined

objectives as SMIP-NN, SMIP-NS, and SMIP, respectively. All of the

three variants are included in the scope of comparison with two

kinds of state-of-the-art GNN-based baselines:

• Supervised GNN-based Pooling Methods: The base method

uses the concatenation of GCN-based node-level represen-

tations as the final graph representations. MeanPool is an

element-wisemean node representation aggregator. GIN [42]

is a graph isomorphic network. SortPooling [46], AttPool

[18], VIPool, and SAGP [23] are selection-based pooling

methods that only select the top k important nodes from the

original graph to form a new coarsened one. DiffPool [44] is

a cluster-based pooling method. ASAP [32] combines both

selection and clustering strategy by selecting top k clusters

to form a pooled graph.

• Unsupervised GNN-based Pooling Methods: UGRAPHEMB

[2] achieves unsupervised pooling via graph-graph proxim-

ity. MinCutPool [4], StructPool [45], and OTCOARSENING

[27] are cluster-based unsupervised methods via mincut loss,

conditional random fields, and optimal transport. InfoGraph

[36], MVGRL [15], LGR [41], CuCo [8] and UHGR [10] are

five MI-based unsupervised pooling methods.

4.1.3 Model Structure and Parameter Settings. We conduct a hierar-

chical graph representation learning model by alternately stacking

node encoder and substructure encoder as shown in Figure2. For

Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information Maximization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 2: Graph classification accuracy of a fixed 10-fold cross-validation in percent on six benchmark datasets. SMIP-NN,
SMIP-NS, and SMIP represent using node-node-only, node-substructure-only and combined objectives, respectively. The best
performance per dataset is boldfaced.

Method Dataset
IMDB-B IMDB-M MUTAG PTC PROTEINS HIV

Supervised Methods

Base 74.67±4.43 48.49±3.34 72.89±2.53 58.82±3.25 72.16±5.69 71.25±1.68

MeanPool 72.24±4.34 48.10±2.86 85.89±5.66 70.58±3.94 79.81±2.91 63.69±0.73

GIN [42] 72.78±0.86 48.13±1.36 81.39±1.53 - 71.76±1.66 -

SortPooling [46] 66.79±3.57 46.99±5.01 83.33±5.55 56.47±7.53 74.05±4.40 69.61±3.02

AttPool [18] 73.80±3.21 51.80±3.43 93.33±6.47 74.11±4.70 79.81±3.78 73.50±1.71

VIPool [24] 74.86±2.10 52.63±2.71 92.24±5.61 71.18±4.82 78.20±3.91 71.93±3.52

SAGP [23] 72.80±1.77 49.21±2.22 74.44±3.65 62.05±9.79 71.87±2.73 73.31±2.20

DiffPool [44] 74.39±3.57 50.33±2.80 92.22±5.66 70.88±6.76 74.23±3.14 74.12±0.53

ASAP [32] 74.30±2.83 49.02±3.17 79.82±7.64 55.30±6.18 71.43±4.30 70.15±3.62

Unsupervised Methods

UGRAPHEMB [2] 73.26±2.19 51.04±3.03 82.35±4.89 63.89±3.65 73.21±4.25 -

MinCutPool [4] 74.30±4.05 48.06±4.05 88.33±7.22 70.87±4.04 79.01±4.35 72.74±2.71

StructPool [45] 73.80±5.36 50.86±2.93 88.88±6.57 70.58±6.41 79.45±3.75 73.10±3.12

OTCOARSENING [27] 74.62±4.90 50.91±3.31 85.64±6.20 - 74.90±3.91 -

InfoGraph [36] 73.03±0.94 49.70±0.57 89.50±1.17 61.75±1.33 71.69±4.37 70.21±2.13

MVGRL [15] 74.27±0.73 51.23±0.56 89.71±1.10 62.52±1.73 - -

LGR [41] 73.33±0.52 50.54±0.31 91.80±0.57 65.86±1.34 - -

CuCo [8] - - 90.52±0.90 57.11±3.06 75.96±0.53 -

UHGR [10] 68.37±4.06 44.91±2.26 86.73±7.52 69.42±5.71 75.93±1.32 68.96±2.13

SMIP-NN (Ours) 71.70±2.83 49.53±3.09 96.10±4.33 79.04±3.34 80.26±3.53 72.29±2.41

SMIP-NS (Ours) 75.00±4.35 53.14±2.08 96.11±3.56 79.12±2.06 81.44±3.67 72.54±2.36

SMIP (Ours) 76.50±3.44 53.33±1.95 97.78±3.68 80.29±2.95 81.80±3.29 74.46±1.82

each node encoder, we resort to a standard two-layer Graph Con-

volution Network (GCN) [20] with latent dimensions set as 64 and

output dimension set as 32. Batch normalization is applied after

each GCN layer. The final output node embedding of each node

encoder is the concatenation of the intermediate hidden representa-

tions. Hence the node embedding dimension will be 96. Moreover,

a readout operation will be used to generate a single-scale graph

embedding attached with each node encoder. What follows a node

encoder is a SMIP layer that takes node embeddings as input. As

shown in Table 1, the graph size distribution of a given dataset may

be highly unbalanced. Thus the number of substructures for the

first SMIP layer is set as 50% of the average rather than the maxi-

mum graph size of the dataset to guarantee that a large proportion

of graphs will be coarsened rather than expanded in the current

dataset. For the rest SMIP layers, coarsen ratios are all set as 0.5. The

new coarsened graph will then be used as the input to another node

encoder. A multi-scale concatenation among the output of all node

encoders will be operated to generate the final graph embedding.

Hyperparameters 𝛼 and 𝛽 are set as (𝛼 = 1, 𝛽 = 0) for SMIP-NS,

(𝛼 = 0, 𝛽 = 1) for SMIP-NN, and (𝛼 = 1, 𝛽 = 1) for SMIP.

All experiments are implemented in Pytorch and conducted on

one Geforce RTX 3090 GPU. The batch size is set to 50 for all the

datasets. The model is trained for fixed epochs (100 on MUTAG,

PTC, IMDB-M and HIV; 150 on IMDB-B; 80 on PROTEINS) using

Adam optimizer with an initial learning rate of 0.0001 for MUTAG,

PTC, IMDB-B, HIV and PROTEINS, and 0.0005 for IMDB-M. We

use an early stopping strategy with a patience of 20 epochs.

4.1.4 Evaluation metrics. For the graph classification task, we feed

the learned training and validation graph embeddings into a logistic

regression classifier trained for 20000 epochs with early stopping

applied when the validation loss does not decrease for 20 consec-

utive epochs. We evaluate model performance with a same-split

10-fold cross validation as SortPooling [46].

4.2 Graph Classification
Table 2 reports the fixed 10-fold cross-validation results of the graph

classification task on six benchmark datasets. The best performance

for each dataset is highlighted in bold. We find that our SMIP is su-

perior to all unsupervised competitors, and even outperforms nine

supervised methods under the circumstance of avoiding extensive

ground-truth labels. Detailed analysis for the experimental results

are as follows.

Compared with unsupervised competitors, we can observe that

our proposed SMIP achieves the best classification accuracy across

all six datasets with an average improvement of 6.83%. Interest-

ingly, SMIP outperforms UGRAPHEMB, which utilizes existing

graph proximity metric for graph embedding. This indicates that

intrinsic features is much more important than inter-graph informa-

tion for a high-quality graph embedding. Besides, it can be noticed

that SMIP exceeds all cluster-based unsupervised pooling methods,

i.e., MinCutPool, StructPool and OTCOARSING. This result, in one

aspect, reflecting that mutual information has natural advantage for

the training of substructure encoder compared with others. In an-

other aspect, it demonstrates that hierarchical model structure with

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Ning Liu, Songlei Jian, Dongsheng Li, & Hongzuo Xu

Table 3: Generalization study results of three cluster-based
pooling methods with substructure-sensitive MI-based objec-
tives. Average performance improvements are also reported.

Dataset MUTAG IMDB-M PTC Avg.Imp

DiffPool 92.22±5.66 50.33±2.80 70.88±6.76 -

DiffPool+ 93.89±4.61 53.73±3.36 74.71±5.91 2.97%
StructPool 88.88±6.57 50.86±2.93 70.58±6.41 -

StructPool+ 91.67±7.14 51.27±3.01 71.77±4.40 1.46%
MinCutPool 88.33±7.22 48.06±4.05 70.87±4.04 -

MinCutPool+ 94.44±4.30 51.07±2.86 72.65±3.23 3.63%

several pooling layers can improve the graph embedding quality,

while MinCutPool, StructPool and OTCOARSING can only cap-

ture graph substructure with one level. More notable is that the

performance of other MI-based pooling methods are all inferior to

SMIP, which highlights the benefit of our substructure-sensitive

MI objective. This result also proves that introduces noise informa-

tion from other graphs into the final graph representations during

contrastive MI estimation is directly harmful to the precision of

graph classification tasks. For dataset MUTAG and PTC, which

are polymerized high molecules with typical hierarchical graphs

with multi-level substructures, we observe that SMIP incredibly

outperforms all unsupervised competitors with an average gain

of 9.62% and 15.04%, respectively. This significant improvement

demonstrates that SMIP fits the characteristics of MUTAG and PTC

well, where the substructure-sensitive MI objective in SMIP can

extract substructure properly.

Compared with supervised GNN-base methods, we find that

the classification results of our SMIP performs better than nine

competitors. The result gives evidence that the implicit information

lies in graphs can be as powerful as that provided by labels to

some extent. Thus, it could be claimed that unsupervised pooling

methods are capable of sustaining the performance of downstream

graph-level tasks as long as sufficient information is extracted from

the original graph.

To better understand the effects of node-substructure MI and

node-node MI, we perform ablation studies, where SMIP-NN, SMIP-

NS, and SMIP represent using node-node, node-substructure, and

combined objectives, respectively. We observe that the SMIP outper-

forms the other two ablated variants. This result provides positive

feedback to our intuition that node-node MI and node-substructure

MI are responsible for different stages of substructure encoder.

Jointly optimizing them provides more comprehensive constraints

for the training of substructure encoder. Besides, it is notable that

the performance of SMIP-NN is slightly inferior to SMIP-NS. This

phenomenon demonstrates that transforming maximum informa-

tion of nodes into substructures plays a decisive role for a high-

quality graph embedding. Meanwhile, substructure formation stage

is tolerant to wrong node allocation.

4.3 Generalization Study
According to the Section 3.2, any cluster-based graph pooling

method following the substructure encoder can be jointly opti-

mized by maximizing both task-specific supervised loss and an

(c) Region Adjacent Graph (f) SMIP

(b) Over-segmentation (Ground Truth)

(a) Image

(e) MinCutPool

(d) DiffPool

Figure 3: Graph-based Image segmentation results. Figure
(a) to (c) illustrates the preprocessing steps, where figure (b)
is considered as the ground truth. Figure (d) to (f) shows
the image segmentation results of three cluster-based graph
pooling methods, in which SMIP yields a more precise seg-
mentation sensitive to similar color patches. Blue and red
rectangles mark the detailed differences.

auxiliary substructure-sensitive MI loss. In this section, we validate

the generalization ability of the proposed substructure-sensitive

objective and conclude that it can be successfully applied to no

matter supervised or unsupervised cluster-based graph pooling

models delivering a better version with improved performance.

We adopt a baseline model architecture implemented with official

codes. This kind of variant is optimized with their original super-

vised loss, and we term this variant as DiffPool, StructPool and

MinCutPool, respectively. For comparison, substructure-sensitive

MI-based loss is added to the original supervised loss, and we term

this variant as DiffPool+, StructPool+, and MinCutPool+, respec-

tively. This kind of variant is used to investigate the contribution

of our substructure-sensitive MI objective.

Table 3 provides the comparison results between variants with

and without substructure-sensitive MI objective, and we report the

average improvement rate on three benchmark datasets. As can be

observed, DiffPool+, StructPool+ and MinCutPool+ outperform the

original variants on all three datasets with noteworthy performance

improvement for an average of 2.97%, 1.46%, and 3.63%, respectively.

This reflects the guiding role of the intrinsic characteristic of graph

data for the formation of graph embeddings. The results verify our

belief that the proposed substructure-sensitive MI objective can

serve as a regularization term in cluster-based pooling methods to

smooth graph embeddings.

4.4 Interpretability Study
To demonstrate the node assignment interpretability and verify the

effectiveness of node-node MI objective in SMIP, we employ image

segmentation as a typical case for interpretability study. Graph-

based image segmentation is implemented as a node clustering task

Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information Maximization CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 4: Parameter test results w.r.t polling depth.

Dataset Loss Pooling=1 Pooling=2 Pooling=3

IMDB-B

NN 71.10±2.83 70.40±3.56 67.99±1.84

NS 72.19±3.99 74.90±3.53 75.00±4.36

NN+NS 73.50±4.45 74.30±3.76 76.50±3.44

MUTAG

NN 94.44±4.30 96.11±4.33 96.10±2.54

NS 92.77±4.99 96.10±3.55 94.99±3.88

NN+NS 93.88±5.80 96.21±3.34 97.78±3.68

PROTEINS

NN 79.09±3.21 81.26±3.53 80.99±3.97

NS 79.90±2.34 80.72±3.39 81.44±3.67

NN+NS 79.09±3.62 80.90±3.50 81.80±3.29

on a region adjacent graph [37], where each node corresponds to a

region with the same color generated by an over-segmentation pro-

cedure [12], and an edge connects the adjacent regions with edge

weights to show color similarity. In this task, nodes with similar

colours are encouraged to cluster together. The results for three

cluster-based graph pooling methods are given in Figure 3 with

the desired number of clusters 𝐾 = 4. According to the ground

truth (Figure3 (b)) , results for DiffPool, MinCutPool and our pro-

posed SMIP indicate that SMIP yields a more precise segmentation.

Note that the segmentation through SMIP preserves detailed re-

gions, such as the small colour patch of the mountains (shown in

red rectangles). Meanwhile, SMIP creates more explicit clustering

bounds among approximate colour regions (shown in blue rect-

angles). However, DiffPool and MinCutPool are less sensitive to

adjacent regions with similar colours. As marked in the blue and

red rectangles, they split different regions into the same cluster.

4.5 Parameter Study
4.5.1 Pooling depth. In this part, we adjust the number of substruc-

ture encoders in the model architecture to investigate the influence

of pooling depth on classification accuracy. Other involved hyper-

parameters remain unchanged with a fixed pooling ratio 𝑟 = 0.5.

The results are listed in Table 4.

It can be observed that all three datasets achieve the best re-

sult when there are three pooling encoders in the model. Gener-

ally, graph classification performance improves with pooling depth

increasing in a proper pooling depth range. This indicates that

enabling hierarchical learning in cluster-based pooling methods

is reasonable, which is crucial for capturing multi-level substruc-

tural information of graphs. Meanwhile, we observe that the node-

substructure MI objective can alleviate the performance deterio-

ration brought from the node-node-only objective to some extent.

This demonstrates that the aggregation of node feature information

plays a dominating role in cluster-based graph pooling because

it imposes a direct constraint on the generation of substructure

embeddings, and therefore should always take the lead in the pool-

ing method. Based on the above observations, appropriate pooling

depth with constraints of both node-node and node-substructure

MI could be a good practice.

4.5.2 Pooling ratios. Apart from the pooling depth, what also influ-

ences the coarsening power is the pooling ratio, which determines

Table 5: Parameter test result w.r.t different pooling ratios.

MUTAG IMDB-M PTC

r=0.1 94.99±5.24 51.93±1.80 78.82±3.90

r=0.3 97.22±2.77 50.93±2.49 79.70±4.45

r=0.5 97.78±3.68 53.33±1.95 80.29±2.95
r=0.7 96.10±3.55 52.73±2.92 78.82±2.20

r=0.9 94.44±3.51 52.86±3.40 78.23±3.52

to what extent the original graph will be coarsened in each pooling

layer. To further demonstrate how the pooling ratio affects the

classification performance and provide a relatively fair compari-

son, we conduct experiments to evaluate different pooling ratios

while keeping other experimental settings unchanged with a fixed

pooling depth 𝑑 = 3. The results are reported in Table 5.

As can be observed, all three datasets achieve the best perfor-

mance with a pooling ratio 𝑟 = 0.5 and the accuracy drops when

the pooling ratio is relatively large or small. In addition, the model

can obtain competitive performance when the pooling ratio is set

within a reasonable range, e.g., 𝑟 ∈ [0.3, 0.7]. We attribute this

discovery to the fact that too large pooling ratio makes graphs

compressed in high density. Therefore, clusters are merged los-

ing certain elaborate information. On the other hand, too small

pooling ratio makes small graphs expand rather than coarsen, and

we assume the further information brought by the expansion may

be noise for the following pooling, although it may exhibit good

performance on giant graphs.

5 CONCLUSION
To overcome the dilemma of unpractical supervision and the draw-

backs of existing unsupervised MI-based graph pooling methods,

we propose a unsupervised hierarchical graph pooling method

based on substructure-sensitive MI maximization, called SMIP. We

consider graph pooling as a node clustering problem and formalize

a substructure encoder. We train the substructure encoder through

the optimization of node-node and node-substructure MI, making

strongly connected nodes with similar features allocated to the

same substructure and inheriting individual node features into sub-

structures as much as possible. The local-scope contrastive learning

makes SMIP more potent in capturing intrinsic features of the in-

put graph. Graph classification results on six benchmark datasets

show that SMIP outperforms state-of-the-art unsupervised meth-

ods and is even superior to nine supervised methods. The gener-

alization study presents significant applicability of the proposed

substructure-sensitive MI-based objectives to other cluster-based

pooling methods.

6 ACKNOWLEDGMENTS
This document is supported byNational Natural Science Foundation

of China (No. 62025208, No. 61932001 and No. 62002371), State

Administration of Science Technology and Industry for National

Defense Foundation (No. WDZC20205250104) and the National

University of Defense Technology Foundation (No. ZK21-17).

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Ning Liu, Songlei Jian, Dongsheng Li, & Hongzuo Xu

REFERENCES
[1] Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. 2018.

Sub2vec: Feature learning for subgraphs. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 170–182.

[2] Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen,

Yizhou Sun, and Wei Wang. 2019. Unsupervised inductive graph-level repre-

sentation learning via graph-graph proximity. arXiv preprint arXiv:1904.01098
(2019).

[3] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua

Bengio, Aaron Courville, and Devon Hjelm. 2018. Mutual information neural

estimation. In ICML. PMLR, 531–540.

[4] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. 2020. Spectral

clustering with graph neural networks for graph pooling. In ICML. PMLR, 874–

883.

[5] Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on

graphs. In Fifth IEEE international conference on data mining (ICDM’05). IEEE,
8–pp.

[6] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,

Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via graph

kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.
[7] Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence

Carin. 2020. Club: A contrastive log-ratio upper bound of mutual information. In

International conference on machine learning. PMLR, 1779–1788.

[8] Guanyi Chu, Xiao Wang, Chuan Shi, and Xunqiang Jiang. 2021. CuCo: Graph

Representation with Curriculum Contrastive Learning. In IJCAI. 2300–2306.
[9] Thomas M Cover. 1999. Elements of information theory. John Wiley & Sons.

[10] Fei Ding, Xiaohong Zhang, Justin Sybrandt, and Ilya Safro. 2020. Unsupervised Hi-

erarchical Graph Representation Learning by Mutual Information Maximization.

arXiv preprint arXiv:2003.08420 (2020).
[11] Roger C Entringer, Douglas E Jackson, and DA Snyder. 1976. Distance in graphs.

Czechoslovak Mathematical Journal 26, 2 (1976), 283–296.
[12] Pedro F Felzenszwalb and Daniel P Huttenlocher. 2004. Efficient graph-based

image segmentation. International journal of computer vision 59, 2 (2004), 167–181.
[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[14] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A

new estimation principle for unnormalized statistical models. In Proceedings of
the thirteenth international conference on artificial intelligence and statistics. JMLR

Workshop and Conference Proceedings, 297–304.

[15] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view

representation learning on graphs. In ICML. PMLR, 4116–4126.

[16] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil

Bachman, Adam Trischler, and Yoshua Bengio. 2018. Learning deep represen-

tations by mutual information estimation and maximization. arXiv preprint
arXiv:1808.06670 (2018).

[17] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,

Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for

machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[18] Jingjia Huang, Zhangheng Li, Nannan Li, Shan Liu, and Ge Li. 2019. Attpool:

Towards hierarchical feature representation in graph convolutional networks via

attention mechanism. In ICCV. 6480–6489.
[19] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization

with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
[20] Thomas Kipf and Max Welling. 2016. Semi-Supervised Classification with Graph

Convolutional Networks. arXiv: Learning (2016).

[21] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[22] Risi Kondor and Horace Pan. 2016. The multiscale laplacian graph kernel. arXiv
preprint arXiv:1603.06186 (2016).

[23] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. 2019. Self-attention graph pooling.

arXiv preprint arXiv:1904.08082 (2019).

[24] Maosen Li, Siheng Chen, Ya Zhang, and Ivor W Tsang. 2020. Graph Cross

Networks with Vertex Infomax Pooling. arXiv preprint arXiv:2010.01804 (2020).
[25] Ralph Linsker. 1988. Self-organization in a perceptual network. Computer 21, 3

(1988), 105–117.

[26] Ning Liu, Songlei Jian, Dongsheng Li, Yiming Zhang, Zhiquan Lai, and Hongzuo

Xu. 2021. Hierarchical adaptive pooling by capturing high-order dependency

for graph representation learning. IEEE Transactions on Knowledge and Data
Engineering (2021).

[27] Tengfei Ma and Jie Chen. 2019. Unsupervised learning of graph hierarchical

abstractions with differentiable coarsening and optimal transport. arXiv preprint
arXiv:1912.11176 (2019).

[28] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui

Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning distributed

representations of graphs. arXiv preprint arXiv:1707.05005 (2017).
[29] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-gan: Training

generative neural samplers using variational divergence minimization. In NIPS.
271–279.

[30] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang

Xu, and Junzhou Huang. 2020. Graph representation learning via graphical

mutual information maximization. In Proceedings of The Web Conference 2020.
259–270.

[31] Nataša Pržulj. 2007. Biological network comparison using graphlet degree distri-

bution. Bioinformatics 23, 2 (2007), e177–e183.
[32] Ekagra Ranjan, Soumya Sanyal, and Partha P Talukdar. 2020. ASAP: Adaptive

Structure Aware Pooling for Learning Hierarchical Graph Representations.. In

AAAI. 5470–5477.
[33] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. 2018. Modeling relational data with graph convolutional

networks. In ESWC. 593–607.
[34] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

[35] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten

Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In

Artificial intelligence and statistics. PMLR, 488–495.

[36] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-

supervised and semi-supervised graph-level representation learning via mutual

information maximization. arXiv preprint arXiv:1908.01000 (2019).
[37] Alain Trémeau and Philippe Colantoni. 2000. Regions adjacency graph applied

to color image segmentation. IEEE T IMAGE PROCESS 9, 4 (2000), 735–744.
[38] Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv e-prints (2018), arXiv–1807.
[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[40] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. 2019. Deep Graph Infomax.. In ICLR.
[41] Chenguang Wang and Ziwen Liu. 2021. Learning graph representation by

aggregating subgraphs via mutual information maximization. arXiv preprint
arXiv:2103.13125 (2021).

[42] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful

are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
[43] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings

of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining. 1365–1374.

[44] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and

Jure Leskovec. 2018. Hierarchical graph representation learning with differen-

tiable pooling. arXiv preprint arXiv:1806.08804 (2018).
[45] Hao Yuan and Shuiwang Ji. 2019. StructPool: Structured graph pooling via

conditional random fields. In ICLR.
[46] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An End-

to-End Deep Learning Architecture for Graph Classification.. In AAAI, Vol. 18.
4438–4445.

	Abstract
	1 Introduction
	2 Related work
	2.1 Unsupervised Graph Pooling
	2.2 Mutual Information Neural Estimation

	3 The Proposed Method: SMIP
	3.1 Preliminaries
	3.2 Substructure Encoder
	3.3 Substructure-Sensitive MI
	3.4 Local-Scope Contrastive MI Estimation
	3.5 Computational Complexity Analysis

	4 Experiments
	4.1 Experimental setup
	4.2 Graph Classification
	4.3 Generalization Study
	4.4 Interpretability Study
	4.5 Parameter Study

	5 Conclusion
	6 Acknowledgments
	References

