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a b s t r a c t 

Network intrusion detection system is an important cyber defence tool to protect a system 

from illegal attacks. Building an effective network intrusion detection system that makes 

good use of deep learning methods is a challenging task. From the object perspective, dif- 

ferent types of malicious attacks have a quite imbalance distribution, especially compared 

with normal network behaviour. From the feature perspective, the network behaviour de- 

scription contains heterogeneous features, including numeric and categorical features and 

complex interactions among these features. To address these two challenges, we propose 

a novel Network Intrusion Detection System which by learning explicit and implicit fea- 

ture interactions based on representation learning, i.e., RL-NIDS, which models the network 

behaviour by learning explicit and implicit feature interactions in both feature value repre- 

sentation and object representation spaces. Specifically, the RL-NIDS consists of two main 

modules, i.e., unsupervised Feature Value Representation Learning module (FVRL) which 

aims to learn the feature interactions among categorical features explicitly, and supervised 

Neural Network for object Representation Learning (NNRL) which aims to learn the im- 

plicit interactions in the representation space. Experiments show the effectiveness of RL- 

NIDS and the object representation learned by RL-NIDS with multiclass classification on two 

real-world datasets. The RL-NIDS outperforms the state-of-the-art feature selection-based 

methods and deep learning-based methods in terms of both overall accuracy, precision, re- 

call, and F1 score. The accuracy of classification of NSL-KDD and AWIDS dataset is 81.38% 

and 95.72%, respectively, achieve 3.9% and 0.9% improvements compare to the second-best 

method. Moreover, a thorough ablation study demonstrates the contributions of both FVRL 

and NNRL which complement each other for capturing feature interactions. 

© 2021 Published by Elsevier Ltd. 
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. Introduction 

ith the widespread use of the Internet, more and more re- 
earch works focus on cyber security Buczak and Guven (2015) ; 
ang et al. (2017) . Among the bunch of cybersecurity defence 

echniques, the network intrusion detection system (NIDS) is 
ne of the most important tools that can actively protect a sys- 
em from illegal external attacks. Traditional NIDS is based on 

attern matching which compares the patterns of a network 
gainst existing malicious patterns which are always sum- 
arized by human. Nowadays, an increasing number of re- 

earchers try to involve machine learning techniques to make 
ntrusion detection more effective Javaid et al. (2016) . 

However, the complex internal characteristics of net- 
ork intrusion behaviours bring challenges to the build- 

ng of an effective detection system. From the object dis- 
ribution perspective, different classes of malicious intru- 
ion have quite imbalanced distribution. Take the dataset 
SL-KDD Dhanabal and Shantharajah (2015) ; Mahoney and 

han (2002) as an example, the normal class contains more 
han 60,000 data objects and the abnormal class R2L and 

2R contains only 995 and 52 data objects which are demon- 
trated in Fig. 1 a. From the feature perspective, the descrip- 
ion of the network behaviour contains both numeric features 
e.g., duration, src_bytes) and categorical features (e.g., proto- 
ol_type, service). Also, complex interactions between these 
eatures and any individual feature cannot reflect the real 
Fig. 1 – Data analysis of
ata distribution. For example, we sample two features (i.e.,
ag,protocol_type) and show their distribution in Fig. 1 b and 

ig. 1 c, respectively. According to the figures, the individual 
eature distribution is quite different from the real data dis- 
ribution which means different features reflect the network 
ehaviour from different perspectives. Also, we visualize the 
ata with t-sne in Fig. 1 d by sampling a few objects from the
riginal dataset. According to the visualization results, the 
ata distribution is quite scattered and the class boundaries 
re hard to find, especially for the minority class, e.g., ’U2R’ 
nd ’R2L’. Therefore, learning the complex interactions be- 
ween these features and overcoming the imbalance issue are 
he key to model the network behaviour and detect the mali- 
ious intrusion. 

To capture the feature interactions and eliminate the re- 
undancy between features and detect network intrusion au- 
omatically, more and more methods try to utilize some ef- 
ective algorithms including machine learning methods and 

eep learning methods. And these effective intrusion detec- 
ion systems can be divided into two categories according to 
he feature learning methods Panda et al. (2012) ; Sommer and 

axson (2010) , feature selection-based methods and deep 

earning-based methods. The feature selection methods only 
onsider the interactions through human-defined heuristic 
ules and some dimension reduction methods. For example,
he works in Salo et al. (2019) and Ganapathy et al. (2012) both
tilizes information gain to select features in an automatic 
ay. The deep learning-based methods always learn fea- 
 NSL-KDD dataset. 
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ture representations through deep neural networks. For ex-
ample, the work Javaid et al. (2016) utilizes sparse autoen-
coder to learn feature embeddings which are then fed into
the multilayer perceptron classifier. And Gamage and Sama-
rabandu (2020) reviews the different neural network architec-
tures for intrusion detection and proposes the best neural net-
work settings. The feature selection-based methods usually
rely on some heuristic rules and only capture specific explicit
interactions between features, which cannot learn the im-
plicit interactions among the features. Although deep learning
can overcome this problem, it is not sensitive to the categor-
ical features and suffers from the limited amount of labelled
data. 

To address the above challenges, we propose a Represen-
tation Learning-based Network Intrusion Detection System,
i.e., RL-NIDS, which models the network behaviour by learn-
ing explicit and implicit feature interactions in both value
and object representation spaces. The RL-NIDS consists of two
main modules, i.e., unsupervised Feature Value Representa-
tion Learning module (FVRL) and supervised Neural Network
for object Representation Learning (NNRL). These two mod-
ules are unified by a deep neural network which is constrained
by classification loss and triplet loss. The contributions of our
work are summarized as follows: 

• The proposed FVRL explicitly captures the multi-grain in-
teractions between categorical features values, which can
reflect the interactions among multiple features and high-
light the abnormal values. Since the FVRL learns feature
value representations instead of object embedding, it is not
sensitive to the data scale, which can partially overcome
the problem of imbalanced data distribution. 

• The supervised NNRL harnesses the representation power
of neural networks and learns the implicit feature interac-
tions among the heterogeneous features. Also, the learned
object representations are denser than the original data by
eliminating the redundancy in an automatic way. 

• A customized triplet learning scheme is proposed to ad-
dress the problem of limited labelled data. Through the
triplet sampling and triplet loss, the data distribution be-
comes more balanced, and the abnormal network intru-
sion behaviours are magnified, which leads to a more dis-
criminative representation and decision boundary. 

Experiments show that (1) the RL-NIDS outperforms the
state-of-the-art feature selection-based and deep learning-
based methods in terms of accuracy, precision, recall and F1
score on two real-world datasets. (2) the object representation
learned by RL-NIDS achieves the best performance by feed-
ing into different classifiers compared with the state-of-the-
art deep learning methods. (3) the FVRL and NNRL both make
contributions to the intrusion detection with a thorough abla-
tion study. 

2. Related work 

The network intrusion detection can be regarded as a super-
vised anomaly detection problem which can also be formu-
lated as a classification problem. In recent years, from tra-
ditional statistical methods to deep learning-based methods,
lots of attempts have been made to extract specific patterns
from attack intrusions and to distinguish attack traffic from
normal traffic. The NIDS related methods can be categorized
as feature selection-based methods and deep learning-based
methods. 

2.1. Feature selection-based methods 

Because the original features in network intrusion datasets
are always redundant and may contain noise which makes
the traditional classifiers hard to find the decision bound-
aries, the feature selection Eesa et al. (2015) is the pre-
liminary step of following classification tasks in lots of
NIDS Aljawarneh et al. (2018) ; Panigrah and Patra (2016) ;
Selvakumar and Muneeswaran (2019) ; Zhou et al. (2020) . For
example, R. Rahmani et al. Aslahi-Shahri et al. (2016) em-
ployed a hybrid method of support vector machine and ge-
netic algorithm, which reduces the number of features in
the dataset of KDDCUP-99 from 41 to 10. The experimen-
tal results show that the algorithm shows outstanding true
positive values and low false-positive values. Alazzam et al.
Alazzam et al. (2020) adopted a Pigeon Inspired Optimizer (PIO)
to optimize the feature selection process for NIDS. The pro-
posed PIO feature selection algorithm reduced the number of
features of KDDCUP99, NSL-KDD, and UNSW-NB15 datasets
from 41 features to 7 features, 5 features and 5 features re-
spectively while maintaining a high TPR, accuracy and reduc-
ing the required time for building a decision tree. The ensem-
ble learning Seni and Elder (2010) ; Webb and Zheng (2004) is
also widely used in NIDS. For example, Abromman and Reaz
Aburomman and Reaz (2016) proposed the Particle Swarm Op-
timization (PSO) algorithm for intrusion detection, which in-
tegrated the results of several learners into a weighted ma-
jority vote method to improve accuracy. However, the classi-
fier used in PSO was based on a binary classification algorithm
which can only distinguish two states. Also, Yuyang Zhou et al.
Zhou et al. (2019) proposed an intrusion detection framework
which was based on the feature selection and ensemble learn-
ing techniques. In his work, An algorithm called CFS-BA was
proposed for dimensionality reduction, which selects the op-
timal subset based on the correlation between features. An
ensemble approach which combines C4.5, Random Forest (RF)
and Forest by Penalizing Attributes (Forest PA) algorithms by
the voting technique was used for classification. 

Although feature selection-based methods can reduce
the feature dimension, they largely depended on the qual-
ity of feature selection algorithms which can not guaran-
tee the best performance on every data scenario, espe-
cially for imbalanced dataset. Also, the existing feature se-
lection methods rely on the heuristic rules and metrics,
which limits its ability to learn complex interactions between
features. 

2.2. Deep learning-based methods 

Deep learning has shown its powerful representation capabil-
ity in many fields including image representation, text rep-
resentation and tabular data ( Bengio et al., 2013; Jian et al.,
2018, 2020 ) which inspires researchers to apply deep learn-
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ng methods to learn feature representation in NIDS automat- 
cally Gamage and Samarabandu (2020) ; Parker et al. (2019) ; 
alo et al. (2019) ; Zhong et al. (2020) . For example, Vinayakumar 
t al. Vinayakumar et al. (2019) proposed a hybrid intrusion de- 
ection alert system which employs distributed deep learning 

odel with Deep Neural Network (DNN) with five hidden lay- 
rs for handling and analyzing huge scale data in real-time.
hey find the most suitable number of layers and nodes by 

esting the proposed neural network on six datasets for binary 
lassification and multiclass classification. Moreover, Jiang 
t al. Jiang et al. (2018) propose a novel multi-channel effec- 
ive attack detection method based on long short term mem- 
ry recurrent neural networks (LSTM-RNNs) which model the 
ttack behaviour as a sequential data by considering the tim- 
ng of attacks. Autoencoder (AE) is also widely used in NIDS 
o learn the representation of network behaviour which can 

e used in the following classifiers. For example, Shone et al.
hone et al. (2018) combined non-symmetric deep AE and ran- 
om forest. In the model, every stacked AE has three hidden 

ayers, and the final encoding layer of the autoencoder acts as 
he input of the classification model. Also, combing the unsu- 
ervised AE with a softmax layer as the classifier to achieve 
nd-to-end training is also adopted in many deep learning- 
ased NIDS Abeshu and Chilamkurti (2018) ; Javaid et al. (2016) ; 
otluri and Diedrich (2016) . Although deep learning can auto- 
atically extract the features of the data without any prior 
anual knowledge, it suffers from the limited training data 

nd cannot capture the interactions between categorical fea- 
ures well since the gradients for categorical data are incalcu- 
able. Existing methods only apply deep learning in intrusion 

etection by transforms categorical feature into one-hot em- 
edding, which cannot model the complex network intrusion 

ehaviour. To address the specific problems in NIDS including 
he heterogeneous features and limited labelled data in abnor- 

al classes, we fuse the explicit categorical feature learning 
nd implicit deep learning to learn a better representation for 
etwork intrusion data. 

. Method 

onsider a network behaviour dataset X with n objects,
hat is, X = { x 1 , x 2 , . . . , x n } , where each object x i =
 x 1 , ., x d c , x d c +1 , . . . , x d c + d n } is described by d c categorical fea-
ures and d n numeric features, and the features belong to 
 = { f 1 , . . . , f d c , f d c +1 , . . . , f d c + d n } . Each categorical feature f i 
as a finite set of values V i = { v i 1 , v i 2 , . . . } and x i ∈ V i . More-
ver, the values from different features has no intersection 

uch that the number of total feature values is | V| = 

∑ d 
i =1 | V i | ,

enoted as m . The X are with label Y which contains C
lasses. 

The architecture of RL-NIDS is demonstrated in Fig. 2 which 

ontains two main modules, i.e., the Feature Value Represen- 
ation Learning module (FVRL) and the Neural Network for 
bject Representation Learning (NNRL). These two modules 
re two independent parts and they are learning separately.
pecifically, the original data features are divided into two 
arts, i.e., categorical features and numeric features. The cat- 
gorical features are first fed into the FVRL, which is based 

n the value-value coupling matrices M c and M o . Then the 
ulti-grain interactions between feature values are explicitly 
earned by clustering with different granularities which re- 
ect the intrinsic data cluster characteristics. The final feature 
alue embedding is the hidden layers of feature value autoen- 
oder with L AE . The learned feature value embeddings and 

riginal numeric features are fused with h to form the input 
f the NNRL. With the encoder, the representation r of each 

ata objects is learned under the constraint of both triplet loss 
 tri and classification loss L cls . The triplet generator considers 

he distribution of each class and generates triplets for triplet 
anking learning. The total loss is the weighted sum of classi- 
cation loss and triplet loss. 

.1. Feature value representation learning 

he unsupervised FVRL captures the feature interactions from 

he feature value perspective, which make it insensitive to the 
ata scale. Since the value set of numeric features is infinite 
nd neural networks are good at capturing numeric data in- 
eractions. FVRL aims to learn numeric embeddings for cat- 
gorical features. Following the work Jian et al. (2017, 2018) ,
e construct the value-value coupling matrices and then con- 
uct multi-grain clustering on the value matrices to get the 
alue clusters with different granularities. To reduce the di- 
ension of value clusters and learn the nonlinear relation- 

hips between different value clusters, we train an autoen- 
oder to learn the feature value embeddings, which form the 
nitial inputs for NNRL. 

p(v i 1 ) denotes the probability of v i 1 that calculated by its 
ccurrence frequency and p(v i 1 , v j1 ) denotes the joint proba- 
ility of v i 1 and v j1 . Thus the joint probability of v i 1 and v j1 is

p(v i 1 , v j1 ) = 

| x , s.t. x i = v i 1 ∩ x j = v j1 | 
n 

, ∀ x ∈ X (1) 

hich describe the co-occurrence of feature value v i 1 
nd v j1 . 

To quantify the mutual dependence between two fea- 
ures, we adopt the normalized mutual information (NMI) 
stévez et al. (2009) . Accordingly, the relation between two fea- 
ures f a and f b could be defined as 

( f a , f b ) = 

2 I( f a , f b ) 
H( f a ) + H( f b ) 

, (2) 

here I( f a , f b ) is the relative entropy of joint distribution and
arginal distribution, and it is written in 

( f a , f b ) = 

∑ 

v i ∈ V f a 

∑ 

v j ∈ V f b 

p(v i , v j ) log 
p(v i , v j ) 

p(v i ) p(v j ) 
. (3) 

 ( f a ) and H ( f b ) are the marginal entropy of feature f a 
nd f b , respectively which can be described by H( f ) = ∑ 

v i ∈ V f p(v i ) log(p(v i )) , f ∈ f a , f b . 

The value couplings can be quantified by the occurrence 
requency and co-occurrence matrix, which are proved to be 
ffective in Jian et al. (2017) . Here we use the value couplings
o learn value embedding instead of an object to overcome 
he imbalanced distribution of objects from different classes.
n detail, the occurrence-based value coupling function is 
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Fig. 2 – The architecture of RL-NIDS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ξo (v i , v j ) = ρ( f i , f j ) × p(v j ) 

p(v i ) 
, which represents the occurrence

frequency of v i influenced by v j . In this function, the NMI of
two features works as a weight. After constructing the cou-
pling function, the occurrence-based relationship matrix M o

is constructed by: 

M o = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ξo (v 1 , v 1 ) · · · ξo (v 1 , v m 

) 
. . . 

. . . 
. . . 

ξo (v m 

, v 1 ) · · · ξo (v m 

, v m 

) 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(4)

The co-occurrence-based value coupling function is

ξc (v i , v j ) = 

p(v i ,v j ) 

p(v i ) 
, which indicates the co-occurrence fre-

quency of value v i influenced by value v j . Thus, the co-
occurrence-based relationship matrix M c is designed as
follow: 

M c = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ξc (v 1 , v 1 ) · · · ξc (v 1 , v m 

) 
. . . 

. . . 
. . . 

ξc (v m 

, v 1 ) · · · ξc (v m 

, v m 

) 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(5)

Based on the above matrices M o and M c , we can learn the
value clusters with different granularities which represent dif-
ferent semantics and well reflect the data characteristics. Here
we conduct k-means clustering on the value matrices with dif-
ferent cluster numbers, i.e., { k 1 , k 2 , . . . , k o } and { k 1 , k 2 , . . . , k c } .
The clustering results are represented by a cluster member-
ship indicator matrix, where the entry is one if a value is con-
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ained in a value cluster and zero otherwise. So we obtain two 
ndicator matrices. We further concatenate these two indica- 
or matrices and obtain a indicator matrix C ∈ { 0 , 1 } m ×k c where
 c = ( 

∑ o 
i =1 k i + 

∑ c 
j=1 k j ) . The rows C { 0 , 1 } 1 ×k c of indicator ma-

rix C can be regarded as the initial embedding for feature 
alues. However, the dimension is really high, and there may 
e redundancy information in this indicator matrix. We apply 
n autoencoder to compress the initial value embedding and 

earn the non-linear interactions between value clusters. The 
idden layer and output layer of the autoencoder are defined 

s follows: 

 = σ (W e · c � + b 1 ) (6) 

ˆ  = σ (W d · v � + b 2 ) (7) 

here the W e ∈ R 

k ×k c , b 1 ∈ R 

k ×1 and W d ∈ R 

k c ×k , b 2 ∈ R 

k c ×1 ,
nd Standardization σ denotes the sigmoid activation func- 
ion, i.e., σ (z ) = 

1 
1+ e −z . Here k is much smaller than k c . The loss

unction of value autoencoder is defined as follows: 

 AE (c , ̂  c ) = −1 
k 

k ∑ 

j=1 

c j · log ̂  c j + (1 − c j ) · log (1 − ˆ c j ) (8) 

The main procedure of feature value embedding is demon- 
trated in Algorithm 1 . Different from the categorical data em- 

lgorithm 1 Learning Process for FVRL. 

nput: X - dataset, α - proportion factor 
utput: V - the embedding of categorical feature values 

1: Generate M o and M c 

2: Initialize C = ∅ 
3: for M ∈ { M o , M c } do 
4: Initialize k ′ = 2 
5: t iny _ cl ust er = ∅ 
6: repeat 
7: C 

′ = kmeans (M , k ′ ) 
8: C = C ∪ C 

′ 

9: k ′ + = 1 
0: until size (t iny _ cl ust er ) ≥ � k ′ 

α
� 

1: end for 
2: V = Autoencoder (C ) 

edding in Jian et al. (2017) , the tiny clusters which contain 

nly one value is kept instead of removing since the tiny clus- 
ers reflect the abnormal behaviour of the feature values. 

.2. Neural network for object representation learning 

y harnessing the powerful representation learning capabil- 
ty of deep neural networks, we design a neural network for 
bject representation learning, i.e., NNRL, based on the FVRL 
hich generates the categorical embedding e c ∈ R 

d c ·k ×1 of 
ach data object through the concatenation of its value em- 
eddings. Then the initial input of the neural network is fused 

y concatenation: 

 = h ([ e c , e n ]) (9) 
here e ∈ R 

(d c ·k + d n ) ×1 and h can be a standardization or 
ormalization operation, for example Gaussian standardiza- 

ion or L2 normalization Van Dongen et al. (2003) . Then the 
epresentation of each data object is learned with an en- 
oder f whose architecture is demonstrated in Fig. 3 . As the 
utput of the second layer, i.e., r 2 is be treated as the final 
epresentation r : 

 = relu (W 2 · relu (W 1 · e + b 1 ) + b 2 ) (10) 

here the W 1 ∈ R 

d 1 ×(d c ·k + d n ) , b 1 ∈ R 

d 1 ×1 and W 2 ∈ R 

d 2 ×d 1 and
 2 ∈ R 

d 2 ×1 . 
Then the predicted probability p in terms of classification 

s calculated as follows: 

 = softmax ( relu (W 3 · r 2 + b 3 )) , (11) 

here the softmax (x k ) = e x k / 
∑ 

j e 
x j , W 3 ∈ R 

d 3 ×d 2 , b 3 ∈
 

d 3 ×1 and p ∈ R 

d 4 ×1 which indicates the classification prob- 
bility for each class. Then we adopt cross-entropy loss 
ang et al. (2016) to train the classifier: 

 cls = −
d 4 ∑ 

c =1 

y c log (p c ) (12) 

here the d 4 is the number of classes in training data. 
Due to the imbalanced distribution, the classes with a few 

abelled data cannot be well trained only by classification 

oss. To learn more discriminative representations, we involve 
riplet loss Hermans et al. (2017) to constrain the representa- 
ion learning process. Different from classification loss which 

s decided by the predicted label and the ground-truth label,
he triplet loss is based on the distance relationship within 

ne triplet without directly involving labels. Specifically, in 

erms of one anchor object, i.e., x a , there are one positive 
bject x p and one negative object x n which form the triplet 
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Fig. 4 – Different triplet generator which decides the quality of triplet learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Learning Process for NNRL. 

Input: E c - categorical data embedding, E n - numeric data 
Output: R - the representation for data objects 
1: Randomly generate triplets set T r 

2: for i = 1 to epch_r do 
3: Sample minibatch B j from T r 

4: Θ ← Θ − Adam [ ∇ ΘL ] 
5: end for 
6: for i = 1 to epoch do 
7: Calculate R according to Θ ref. to Eq. (10) 
8: Initialize T h = ∅ 
9: for each data in class C do 

10: Randomly generate triplets T C 

11: Ω ← top k hardest triplets from T C ref. to Eq. (14) 
12: T h = T h ∪ Ω

13: end for 
14: for j = 1 to epoch_h do 
15: Sample minibatch B j from T h 

16: Θ ← Θ − Adam [ ∇ ΘL ] 
17: end for 
18: end for 

 

 

 

 

 

 

 

 

 

 

 

 

 

〈 x t , x p , x n 〉 . The triplet loss in terms of the triplet 〈 x a , x p , x n 〉 is
defined as follows: 

L tri = max { 0 , ε + dis (x a , x p ) − dis (x a , x n ) } (13)

where the ε is the margin parameter and dis is the distance
function based on the object representations. Here we use L2
norm based on data representation, i.e., dis (x a , x p ) = || r a − r p || .

According to the above loss definition, the distance be-
tween anchor object and negative objects will be enlarged
while the distance between anchor object and the negative ob-
ject will be reduced Chen et al. (2017) . Therefore, the core prob-
lem of triplet loss is the generation of triplets which decides
the quality of triplet learning. Since we want to maximize the
decision boundary between different classes, it is natural to
use class labels to construct the triplet. As shown in Fig. 4 a, the
anchor and positive objects are from the same class while the
negative object is from the different class. Moreover, a good
triplet should be hard to distinguish the negative and positive
so that the data representation would be more discriminative
after training. Therefore, we construct the hard triplet gen-
erator, as shown in Fig. 4 b, which samples the top k hardest
triplets according to the distance difference: 

d is di f = d is (x a , x p ) − dis (x a , x n ) . (14)

Then the final loss of representation learning is as follows:

L = L cls + αL tri (15)

where the α is the hyperparameter. 
We use mini-batch learning to learn the parameters � =

{ W j , b j , j ∈ { 1 , 2 , 3 }} in NNRL. Then the mean loss of a mini-
batch B for computing gradients is given as: 

L = 

1 
|B| 

∑ 

〈 x i , x j , x k 〉∈B 
(L cls + αL tri ) (16)

We adopt Adam Kingma and Ba (2014) for optimizing the
gradients ∇ �L to find the optimal model parameters �. The
detailed learning algorithm of the representation neural net-
work is shown in Algorithm 2 . We firstly generate triplet by
only considering the class label without the dis di f since the
initial representations are meaningless. After some training
for some epoch, we generate the hard triplet according to the
dis di f by using the updated representations. Then the hard
triplet generating process and the parameter learning process,
i.e., representation learning process, are iteratively optimized.

4. Experiments 

In this section, we firstly introduce detailed experiment setup
which includes the evaluation datasets, data preprocess-
ing, comparison methods and evaluation metrics. Then we
demonstrate the evaluation performance and analysis the re-
sults. Finally, we do a ablation study to reveal the contributions
of the two mains parts in RL-NIDS. 

4.1. Experiment setup 

4.1.1. Datasets 
Data Mining and Knowledge Discovery (KDD) CUP is an annual
competition organized by ACM, and KDD Cup99 dataset has
always been a classic dataset in the field of intrusion detec-
tion. Tallaee et al. Tavallaee et al. (2009) proposed a revised ver-
sion of the KDD Cup99 dataset and named it NSL-KDD in 2009
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Table 3 – The 23 features we use in AWID dataset. 

Index Feature Name Type 

4 frame.time_epoch numeric 
5 frame.time_delta numeric 
7 frame.time_relative numeric 
8 frame.len numeric 
38 radiotap.mactime numeric 
47 radiotap.datarate numeric 
48 radiotap.channel.freq categorical 
50 radiotap.channel.type.cck categorical 
61 radiotap.dbm_antsignal numeric 
64 wlan.fc.type_subtype categorical 
66 wlan.fc.type categorical 
67 wlan.fc.subtype categorical 
68 wlan.fc.ds categorical 
69 wlan.fc.frag categorical 
70 wlan.fc.retry categorical 
71 wlan.fc.pwrmgt categorical 
72 wlan.fc.moredata categorical 
73 wlan.fc.protected categorical 
75 wlan.duration numeric 
141 wlan.wep.key categorical 
146 wlan.qos.priority categorical 
151 wlan.qos.bit4 categorical 

4
T
d

hich deletes some of the duplicate records in KDD Cup99.
eeshan Ahmad Ahmad et al. (2020) conducted a systematic 
tudy and select recent journal articles focusing on various 
L- and DL-based NIDS which are published from 2017 to 

020, and the proportion of NSL-KDD or KDD Cup99 was used 

or testing and validating purposes is 60%. This data shows the 
SL-KDD dataset is widely used for NIDS. NSL-KDD dataset 
overs the KDDTrain dataset as the training set and KDDTest 
s the testing set, which has one normal record, i.e., Normal,
nd four different types of attack records, i.e., Dos, Prob, R2L,
nd U2R. The semantic meaning for each class of NSL-KDD 

ataset is as follows: 

• Normal: this indicates normal connection records. 
• Dos: this describes the attacks aiming at making network 

resource down. 
• Probe: this describes the attacks aiming at obtaining de- 

tailed statistics of system and network configuration de- 
tails. 

• R2L: this refers to illegal access from a remote computer. 
• U2R: this describes the attacks aiming at obtaining the root 

or super-user access on a particular computer. 

The dataset contains 41 features which include 10 basic 
eatures, 12 content features, and 19 traffic features. There are 
2 numeric features and 9 categorical features in the NSL-KDD 

ataset. The statistic information for NSL-KDD training and 

est data is shown in Table 1 . 
Another dataset we use is Aegean WiFi Intrusion Dataset 

AWID) Kolias et al. (2015) which captures 37 million packets 
ith a small network environment in one hour. The dataset 

ontains training set and test set as shown in Table 2 which 

ave one normal class and three types of attacks, i.e., Flood- 
ng, Impersonation and Injection, whose semantic meaning is 
hown in follows: 

• Normal: this indicates normal connection records. 
• Flooding: this refers to the attacks which create a sudden 

increase in the management frames per time unit. 
Table 1 – The statistic of NSL-KDD dataset. 

Class Training # Training % Test # Test % 

Normal 67,343 53.59% 9710 43.07% 

Dos 45,927 36.54% 7458 33.08% 

Probe 11,656 9.27% 2421 10.74% 

R2L 995 0.79% 2754 12.22% 

U2R 52 0.04% 200 0.89% 

Total 125,673 100% 22,543 100% 

Table 2 – The statistic of AWID dataset. 

Class Training # Training % Test # Test % 

Normal 1,631,218 90.96% 530,785 92.21% 

Flood 48,484 2.70% 8097 1.41% 

Imper 48,522 2.70% 20,079 3.49% 

Injection 65,379 3.64% 16,682 2.90% 

Total 1,793,603 100% 575,643 100% 

 

• Impersonation (i.e., Imper): this refers to the attacks which 

introduce additional access points in the neighbourhood 

broadcasting Beacon frames that advertise a pre-existing 
valid network. 

• Injection: this refers to the attacks which cause a deluge of 
validly encrypted data frames of smaller size. 

.1.2. Data preprocessing 
he following pre-processing steps are performed on the 
atasets. 

• Data cleaning: The original AWID dataset can be organized 

as tabular data with 156 features and contains many miss- 
ing data Aminanto and Kim (2016) . We firstly pre-process 
the dataset by removing the duplicated features and in- 
valid values in the fields. For example, the value of nor- 
malized mutual information between the ’radiotap.length’ 
feature and the ’radiotap.present.tsft’ feature is 1. It means 
these two features have the same distribution and can of- 
fer duplicated contribution to a classifier. The value of the 
feature ’frame.interface.id’ is 0 for all objects, and it offers 
no contribution to a classifier, it also should be removed 

from features. Then we remove these objects with missing 
feature values and generate a new dataset with 23 features 
with 14 categorical features and 9 numeric features, shown 

in Table 3 . For NSL-KDD dataset, all objects can be saved. 
• Numericalization: There are 9 categorical features in NSL- 

KDD dataset and 14 categorical features in AWID dataset.
Because the input value of contrast models should be a nu- 
meric matrix, we convert these non numeric features into 
numeric form by one-hot encoded Buckman et al. (2018) in 

comparison methods. 
• Scaling features: The difference between the maximum 

and minimum values has a very large scope in some fea- 
tures Van et al. (2017) . All features of two datasets are 
scaled by standard normalization. 
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4.1.3. Comparison methods 
We choose seven state-of-the-art network intrusion detec-
tion methods which including five feature selection-based
methods and two deep learning-based methods for different
datasets. 

• CPIO Alazzam et al. (2020) : this work proposed a pigeon in-
spired optimizer-based feature selection algorithm for in-
trusion detection on NSL-KDD dataset. They selected 18
and 5 features by Sigmoid-PIO and Cosine-PIO methods as
the input data separately, and selected decision tree as the
classifier. 

• IG-Hybrid Aljawarneh et al. (2018) : this work filtered fea-
tures by using the voting algorithm with Information Gain
(IG) in NSL-KDD dataset and used hybrid classifiers which
contains: J48, Meta Pagging, RandomTree, REPTree, Ad-
aBoostM1, DecisionStump and NaiveBayes.The number of
features they selected is 8 

• CFS-BA-Ensemble Zhou et al. (2020) : this work combined
the correlation-based feature selection and bat algorithm
to select features in NSL-KDD dataset and select 10 feature
as the input data of classifier. The classifier adopts an en-
semble approach that combines C4.5, Random Forest (RF),
and Forest by Penalizing Attributes (Forest PA) algorithms.

• IG-PCA Salo et al. (2019) : this work combined IG and prin-
cipal component analysis (PCA) to select the features and
reduce the dimension of NSL-KDD dataset, used an en-
semble classifier based on support vector machine (SVM),
Instance-based learning algorithms (IBK), and multilayer
perceptron (MLP). 

• IG-CH Thanthrige et al. (2016) : this work used Information
Gain (IG) and Chi-Squared statistics (CH) to select the fea-
tures in AWID dataset and use the random forest as the
classifier. 

• AE-MLP Javaid et al. (2016) : this work adopted Autoencoder
to learn a feature embedding in an unsupervised way and
then trained multilayer perceptron classifier. 

• DNN Gamage and Samarabandu (2020) : this work explored
different parameter settings for deep neural network and
proposed the state-of-the-art deep neural network which
contains three hidden layers. 

All parameters in the above comparison methods are set
according to the original papers. 

4.1.4. RL-NIDS Implementation 

As discussed in the previous section, the original data fea-
tures are divided into two parts, categorical features and nu-
meric features. The number of categorical features of NSL-
KDD dataset and AWID dataset is 9, 14 respectively. The cat-
egorical features are first fed into the FVRL module to calcu-
late the value-value coupling matrices M c and M o . Then the
multi-grain interactions between feature values are explicitly
learned by clustering with different granularities which re-
flect the intrinsic data cluster characteristics. The dimension
of hidden layer of feature value autoencoder is 10 and 5 for
NSL-KDD dataset and AWID dataset respectively. 

The learned feature value embeddings and original nu-
meric features are fused to form the input of the NNRL mod-
ule.To NSL-KDD dataset, the parameters in encoder f (refer to
Fig. 3 ) of the NNRL are set to: d 1 = 64 , d 2 = 32 , d 3 = 16 and
d 4 = 5 . The activation function is RELU except the last activa-
tion function is Softmax. The optimizer is Adam and the learn-
ing rate is 0.0006. In the generation of triplets, we randomly
select part of samples as anchor points from large number of
class, and take all samples as anchor points from fewer class,
which is beneficial to improve the detection rate of fewer sam-
ples. The final loss of NNRL is the sum of classification loss and
triplet loss. In NNRL,we set the batch_size is 256 and epoch is
20 in training step, and we adopt 10-fold cross-validation to
get a better model. 

4.1.5. Evaluation metrics 
In the field of network intrusion detection, samples that con-
tain attacks can be defined as positive samples, and samples
that do not contain attacks can be defined as negative sam-
ples Kasongo and Sun (2020) . The result of the classification
may be correct or incorrect. All possible results can be divided
into the following four situations: 

• True Positive (TP): Positive samples are classified as positive
samples; it means the number of Attack objects classified
correctly. 

• True Negative (TN): Negative samples are classified as neg-
ative samples; it means the number of Normal objects clas-
sified correctly. 

• False Positive (FP): Negative sample is classified as a pos-
itive sample; it means the number of Normal objects
wrongly classified as an attack. 

• False Negative (FN): Positive sample is classified as a nega-
tive sample; it means the number of Attack objects wrongly
classified as normal. 

We adopt four metrics Yin et al. (2017) to evaluate the clas-
sification performance: 

• Accuracy: the proportion of correctly classified objects out
of a given set of objects 

Accuracy = 

T P + T N 

T P + T N + F P + F N 

• Precision: the proportion of correct classifications out of a
set of predictions classified as attack 

Precision = 

T P 
T P + F P 

• Recall: the proportion of correct attack classifications out
of a given set of attack objects 

Recall = 

T P 
T P + F N 

• F1 score: the harmonic mean of precision and recall which
suits for class-imbalanced problems 

F 1 = 2 · Precision · Recall 
Precision + Recall 

For multiclass classification problems, precision, recall and
F1 scores can be calculated per-class, treating the classifica-
tion as a one-vs-all problem. The final metrics are obtained
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Table 4 – The mutli-class classification results with the state-of-the-art methods on NSL-KDD dataset. 

Method Accuracy Precision Recall F1 F1-Normal F1-Prob F1-DOS F1-R2L F1-U2R Time(min) 

CPIO Alazzam et al. (2020) 0.7579 0.7543 0.7579 0.7117 0.7909 0.8024 0.8475 0.0349 0.0198 0.003 
IG-Hybrid Aljawarneh et al. (2018) 0.6701 0.6055 0.6701 0.5996 0.7511 0.2377 0.7572 0.0000 0.0000 1.383 
CFS-BA-Ensemble Zhou et al. (2020) 0.7211 0.7593 0.7211 0.6777 0.7830 0.6439 0.7869 0.0882 0.0193 0.115 
IG-PCA Salo et al. (2019) 0.5790 0.5043 0.5790 0.5111 0.7451 0.1236 0.5348 0.0000 0.0000 2.317 
AE-MLP Javaid et al. (2016) 0.7295 0.6661 0.7295 0.6783 0.7726 0.6474 0.8344 0.0000 0.0000 2.367 
DNN Gamage and Samarabandu (2020) 0.7821 0.7975 0.7821 0.7455 0.8045 0.7681 0.8854 0.1932 0.0000 2.152 
RL-NIDS 0.8138 0.8369 0.8138 0.7879 0.8296 0.8165 0.9100 0.3424 0.0000 4.883 
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y weighted macro averaging every class whose weight is de- 
ided by the number of objects in the class. 

.2. Results and analysis 

o demonstrate the effectiveness of our proposed RL-NIDS, we 
valuate the RL-NIDS and the state-of-the-art intrusion detec- 
ion methods with multiclass classification tasks on both NSL- 
DD dataset and AWID dataset. Also, to show the effective- 
ess of the representation learned by RL-NIDS, we compare 

he representations with other deep learning-based methods 
y feeding the representations into different types of classi- 
ers. 

.2.1. The effectiveness of RL-NIDS 
he multiclass classification results on NSL-KDD dataset are 
emonstrated in Table 4 , which includes the overall perfor- 
ance and detailed performance for each class. The CPIO, IG- 
ybrid, CFS-BA-Ensemble and IG-PCA are feature selection- 
ased methods which reduce the original 41 features to 5 fea- 
ures, 8 features, 13 features and 12 features, respectively. Ac- 
ording to Table 4 , RL-NIDS achieves the best performance 
n terms of accuracy, precision, recall and F1-score compared 

ith all other methods. Specifically, RL-NIDS achieves 6.9%,
7.7%, 11.4%, 28.8%, 10.4%, 3.9% improvements over CPIO, IG- 
ybrid, CFS-BA-Ensemble, IG-PCA, AE-MLP and DNN in terms 
f accuracy, respectively. 

Among feature selection methods, CPIO beats other feature 
election-based methods since it adopts the sophisticated fea- 
ure interaction learning process. Overall, the deep learning- 
ased methods outperform feature selection-based methods 
hich indicate the neural networks is more capable of captur- 

ng complex and implicit interactions among features. 
For the specific detection performance of each class in 

SL-KDD dataset, the proposed RL-NIDS achieves the 3.0%,
.9%, 2.7%, 43.6% F1-score improvements over the second-best 
ethod, i.e., DNN, on Normal, Prob, DOS, R2L, respectively. Es- 

ecially, the objects of R2L class only occupy 0.79% percent of 
Table 5 – The mutli-class classification results with the state-of

Accuracy Precesion Recall F1 

IG-CH Thanthrige et al. (2016) 0.9305 0.9018 0.9305 0.91
AE-MLP Javaid et al. (2016) 0.9484 0.9683 0.9484 0.93
DNN Gamage and Samarabandu (2020) 0.9479 0.9287 0.9479 0.93
RL-NIDS 0.9572 0.9398 0.9572 0.94
ll training data according to Table 1 . The good performance 
f RL-NIDS on R2L attack detection indicates its capability of 
andling imbalanced data. However, the U2R class only con- 

ains 52 objects (0.04%) in training data which leads to the dif- 
culty of detection for all methods, which can be proved by 
he t-sne visualization results 1 d. 

The multiclass classification results on AWID dataset are 
emonstrated in Table 5 . Because the CPIO, IG-Hybrid and CFS- 
A-Ensemble did not report the feature selection results of 
WID dataset and the original papers are not detailed enough 

o reproduce the feature selection process, we only report the 
G-CH result which has similar feature selection method with 

G-Hybrid. The IG-CH selected 10 features from the original 
56 features while other deep learning-based methods use the 
3 features shown in Table 3 . According to Table 5 , RL-NIDS
chieves the best overall performance compared with IG-GH,
E-MLP and DNN in terms of accuracy, recall and F1-score.
or the specific detection performance of each class in AWID 

ataset, the feature selection-based method IG-GH can only 
etect normal data and Injection attack which occupy the ma- 

ority of the training dataset. In contrast, the deep learning- 
ased methods can detect the Flooding attacks which occupy 
nly 2.7% in training data. Moreover, the RL-NIDS achieves the 
est detection performance on both Flooding and Imperson- 
tion attacks. 

Moreover, we test the training time of each methods in the 
xperiment and the experimental platform adopts the Linux 
perating system. The CPU of the host is Intel(R) Xeon(R) Sil- 
er 4214 CPU and the main frequency is 2.2GHz.The result as 
hown in the last column of Table 4 and Table 5 . The training
ime of the feature selection-based methods are less than the 
raining time of methods based on deep learning while the 
erformance of deep learning-based methods is better than 

hem. Since we capture more sophistic feature interactions 
hrough feature value representation learning and deep neu- 
al network, the training time of our proposed is longer than 

ther methods. Luckily, deep learning-based methods can be 
argely accelerated by GPU or other hardware since the ma- 
-the-art methods on AWID dataset. 

F1-Normal F1-Flooding F1-Imper F1-Injection Time(min) 

24 0.9943 0.0000 0.0000 0.5639 0.189 
99 0.9905 0.5177 0.0365 0.6246 7.238 
43 0.9726 0.5455 0.0335 0.9901 6.882 
47 0.9923 0.7251 0.1023 0.9910 20.838 
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Fig. 5 – The multiclass classification results (%) of different representations in different classifier on NSL-KDD dataset. 

Fig. 6 – The multiclass classification results (%) of different representations in different classifier on AWID dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trix operations on GPU is constant time. Also the most time-
consuming part, i.e., triplets sampling process, in our method
can be accelerated by batch operation and stratified sampling
Poorheravi et al. (2020) . 

4.2.2. The effectiveness of object representations 
To illustrate the quality of object representations learned by
deep learning-based methods, we apply the representations
learned by AE-MLP, DNN and RL-NIDS into three different
types of classifier, i.e., Naive Bayesian (NB), Support Vector Ma-
chine (SVM) and Random Forest (RF). A good representation
should have generalization ability which means it should not
be sensitive to the classifiers. The multiclass classification re-
sults on NSL-KDD dataset and AWID are demonstrated in Fig. 5
and Fig. 6 , respectively. According to Fig. 5 , no matter with
which classifier, RL-NIDS achieves the best performance in
terms of overall accuracy, precision, recall and F1 score. Also,
the representation learned by RL-NIDS performs relatively sta-
bly on each classifier while results of AE-MLP fluctuate with
the change of classifier. 

The classification results are decided by three important
elements: data distribution, representation quality, and clas-
sifier quality. According to the Fig. 5 and Fig. 6 , the results are
quite different because the distribution of the NSL-KDD and
AWID datasets are quite different. The normal class of AWID
(90.96% according to Table 2 ) are much larger than the normal
class of NSL-KDD (53.59% according to Table 1 ), which means
the overall performance of AWID is mainly decided by the de-
tection rate of the normal class. The importance of represen-
tation is vividly demonstrated by the Fig. 5 and Fig. 6 . In terms
of the same dataset and the same classifier, different repre-
sentations perform quite different. Among the representation
learned by different deep learning-based methods, our pro-
posed RL-NIDS benefits from the triplet loss which overcomes
the imbalance issue of the dataset to a certain extend. With
a good representation, the classifier can boost its best perfor-
mance according to the figures. 

4.3. Ablation study 

To demonstrate the effectiveness of each module in RL-NIDS,
i.e., FVRL and NNRL, we do a thorough ablation study on
NSL-KDD dataset. The FVRL accepts the original categorical
features and generates the numeric embedding which is fed
into the NNRL module. The NNRL is trained with the loss in
Eq. 15 which contains classification loss and triplet loss. 

4.3.1. The effectiveness of FVRL 
To test the influence of different data input on the final clas-
sification results, we construct three types of inputs: 

• Cate+Num: the concatenation of one-hot encoding for cat-
egorical features and numeric features. 
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Table 6 – The multiclass classification results with different data inputs on NSL-KDD dataset. 

Classifier Input Accuracy Precesion Recall F1 F1-Normal F1-Prob F1-DOS F1-R2L F1-U2R 

RF Cate + Num 0.7538 0.8157 0.7538 0.7129 0.7798 0.7547 0.8607 0.0827 0.0291 
FVRL 0.7211 0.6568 0.7211 0.6796 0.7880 0.5174 0.8522 0.0046 0.2333 
FVRL + Num 0.7710 0.8197 0.7710 0.7247 0.7927 0.7736 0.8922 0.0335 0.1105 

NNRL Cate + Num 0.7828 0.7762 0.7828 0.7312 0.7918 0.7928 0.8893 0.0457 0.0000 
FVRL 0.7235 0.6429 0.7235 0.6582 0.7971 0.4084 0.8193 0.0000 0.0000 
FVRL + Num 0.8137 0.8369 0.8138 0.7879 0.8296 0.8165 0.9100 0.3424 0.0000 

ssss 

Table 7 – The multiclass classification results with different loss functions in NNRL on NSL-KDD dataset. 

Accuracy Precesion Recall F1 F1-Normal F1-Prob F1-DOS F1-R2L F1-U2R 

NNRL ( L cls _ mse ) 0.7255 0.6601 0.7255 0.6787 0.7542 0.6781 0.8493 0.0000 0.0000 
NNRL ( L cls _ mae ) 0.7121 0.6590 0.7121 0.6634 0.7516 0.6862 0.8033 0.0014 0.0000 
NNRL ( L cls _ possion ) 0.7905 0.8252 0.7905 0.7498 0.8102 0.7901 0.9032 0.1737 0.0000 
NNRL ( L cls ) 0.7911 0.8249 0.7911 0.7513 0.8126 0.7957 0.9017 0.1437 0.0000 
NNRL ( L cls + L tri ) 0.8137 0.8369 0.8138 0.7879 0.8296 0.8165 0.9100 0.3424 0.0000 

 

R
d
a
b
m
t
p
t  

T
t
p

4
T
E
t

d
e

f
s  

m
i  

d
s  

n
t

5

N
d  

I  

w
p
t
a
v
i
r
t
l
t
d
s
N
R
i  

4
i
t
t
F  

E
o
i

• FVRL: the output embedding of FVRL with only categorical 
features as input. 

• FVRL+Num: the concatenation of the FVRL output embed- 
ding and numeric feature which is the input for RL-NIDS. 

These three inputs are evaluated by two classifiers, i.e.,
andom Forest (RF) and NNRL. The classification results are 
emonstrated in Table 6 . According to the results of Cate+Num 

nd FVRL+Num in both RF and NNRL, the embedding learned 

y FVRL is more informative than one-hot encoding, which 

eans the FVRL capture more sophisticated feature interac- 
ions in categorical features. The NNRL with Cate+Num as in- 
ut denotes the RL-NIDS without FVRL which performs worse 
han the NNRL with FVRL+Num (i.e., full RL-NIDS model).
hese results indicate the contribution of FVRL and the impor- 

ance of capturing the feature interactions explicitly, which 

lays a complementary role with NNRL. 

.3.2. The effectiveness of NNRL 
o test the contribution of the different loss function in 

q. 12 and Equation 15 , we construct the following loss func- 
ions: 

• L cls _ mse : only classification loss with Mean Square Error 
(MSE) loss function. 

• L cls _ mae : only classification loss with Mean Absolute Error 
(MAE) loss function. 

• L cls _ possion : only classification loss with Possion loss func- 
tion. 

• L cls : only classification loss with cross-entropy loss func- 
tion in Eq. 12 . 

• L cls + L tri : the combination of classification loss and triplet 
loss. 

The classification results with different loss functions are 
emonstrated in Table 7 . According to the results, the cross- 
ntropy performs the best among other classification loss 
unctions. Moreover, the combination of triplet loss and clas- 
ification loss, i.e., NNRL ( L cls + L tri ), achieves the best perfor-
ance which indicates the importance of triplet loss. Accord- 

ng to Table 6, Table 4 and Table 7 , the class U2R cannot be
etected by all deep learning-based methods. The main rea- 
on is the very few training objects lead to the poor fitting for
eural networks. This is also a future work or direction for de- 

ecting these few labeled attacks. 

. Conclusion 

IDS is essential to cybersecurity and making good use of 
eep learning techniques to build NIDS is not a trivial task.

n this work, we propose an effective NIDS, i.e., RL-NIDS,
hich contains explicit feature interaction learning and im- 
licit deep representation learning. The explicit feature in- 
eraction learning captures the network behaviour through 

 multi-grain clustering and highlights the abnormal feature 
alue in the learned embedding in an unsupervised way. The 
mplicit representation learning is implemented by a neu- 
al network which is constrained by classification loss and 

riplet loss. We design a customized triplet generating and 

earning process to learn a more discriminative representa- 
ion and decision boundaries to overcome the imbalanced 

ata distribution issue. By applying the RL-NIDS and repre- 
entation learned by RL-NIDS to multiclass classification on 

SL-KDD and AWID datasets, the superior performance of 
L-NIDS shows its effectiveness and the generalization abil- 

ty of the representations. Specifically, RL-NIDS achieves 3.9%,
.1%, 3.9%, 4.2% improvements over the second-best method 

n terms of accuracy, precision, recall and F1 score, respec- 
ively. For the specific detection performance of each class in 

he NSL-KDD dataset, the proposed RL-NIDS achieves 43.6% 

1-score improvements over the second-best method on R2L.
specially the objects of R2L class only occupy 0.79% percent 
f all training data and it indicates its capability of handling 

mbalanced data. Moreover, the ablation study demonstrates 
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the contribution of both explicit feature interaction learning
and implicit representation learning neural network. 
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