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CURE: Flexible Categorical Data Representation
by Hierarchical Coupling Learning
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Abstract—The representation of categorical data with hierarchical coupling relationships (i.e., value-to-value cluster interactions) is
very critical yet challenging for capturing complex data characteristics in learning tasks. This paper proposes a novel and flexible
coupled unsupervised categorical data representation (CURE) framework, which not only captures the hierarchical couplings but is
also flexible enough to be instantiated for contrastive learning tasks. CURE first learns value the clusters of different granularities based
on multiple value coupling functions and then learns the value representation from the couplings between the obtained value clusters.
With two complementary value coupling functions, CURE is instantiated into two instances: coupled data embedding (CDE) for
clustering and coupled outlier scoring of high-dimensional data (COSH) for outlier detection. These show the CURE capabilities to
customize value clustering and coupling learning between value clusters for different learning tasks. CDE embeds categorical data into
a new space in which features are independent and semantics are rich. COSH represents data with an outlying vector to capture
complex outlying behaviors of objects in high-dimensional data. Substantial experiments show that CDE significantly outperforms three
popular unsupervised encoding methods and three state-of-the-art similarity measures, and COSH performs significantly better than
five state-of-the-art outlier detection methods on high-dimensional data. CDE and COSH are scalable and stable, linear to data size
and quadratic to the number of features, and are insensitive to their parameters.

Index Terms—Categorical Data Representation, Unsupervised Learning, Coupling Learning, Non-IID Learning, Clustering, Outlier
Detection.
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1 INTRODUCTION

CATEGORICAL data with finite unordered feature val-
ues is ubiquitous in real-world applications and has

received increasing recent attention for representation and
learning [1], [2], [3]. Unlike numerical data, categorical data
cannot be directly manipulated per algebraic operations;
hence many popular numerical learning algorithms are not
directly applicable. Accordingly, it is important to learn an
expressive numerical representation of categorical data.

1.1 Motivation
In general, a good representation should effectively capture
the intrinsic data characteristics [4]. One key characteristic
in complex categorical data is the following hierarchical
coupling relationships (referring to various interactions,
couplings for short) [5], [6] embedded in feature values.
(1) On the low level, there exist strong couplings between
feature values, demonstrating the natural clustering of val-
ues. Taking census data as an example, it may be clear that
the value PhD of feature Education is highly coupled with
the values Scientist and Professor of feature Occupation; and
these values form a semantic value cluster that characterizes
one type of strong relations between education and occupa-
tion. In addition, different value clusters exist on different
granularities and with different semantics [7]; e.g., all values
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belong to one super cluster at the coarsest granularity while
each value is a cluster at the finest granularity. (2) On
the high level, the clusters of feature values are further
coupled with each other. Couplings exist between clusters
of the same granularity and between clusters of different
granularities.

Representing the above couplings in categorical data has
been rarely studied, which is even difficult in unsupervised
learning while existing representation learning mainly fo-
cuses on supervised learning. This work thus addresses this
issue, and develops a flexible representation to handle two
contrastive unsupervised learning tasks: clustering and out-
lier detection. Clustering assigns objects to different clusters
and its clustering performance is mainly affected by the
majority of data objects; while outlier detector identifies
abnormal objects which are rare or inconsistent with the
majority of objects, hence its performance is mainly affected
by the minority of objects.

For clustering, the more relevant the information the
representation captures, the more reliable the clustering is,
especially for complex data where there are hierarchical
couplings. However, existing embedding and similarity-
based representation methods for clustering can capture
only a part or none of these feature value couplings. Typical
embedding-based representation methods transform cate-
gorical data to numerical data by encoding schemes, e.g.,
one-hot encoding and Inverse Document Frequency (IDF)
encoding [8]. These methods do not capture the couplings
between feature values since they usually treat features
independently. Some recent similarity-based representation
methods, e.g., in [1], [9], [10], [11] incorporate feature rela-
tions into similarity or kernel matrices. However, they do
not capture the couplings from value-to-value clusters or
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the couplings between value clusters, leading to insufficient
representation power in handling data with such hierarchi-
cal value couplings.

For outlier detection, the representation capturing more
relevant information, however, does not guarantee better
performance. The captured information also needs to be
outlier-discriminative. Most encoding or similarity-based
methods [1], [9], [10] are majority-based representation,
which does not capture the abnormal aspects of data. Dif-
ferent from these methods, most existing outlier detection
methods for categorical data [12], [13], [14], [15] use pattern-
based representation (i.e., the data is represented by a set
of outlying/normal patterns) to disclose the characteristics
of outliers. However, patterns are normally a subset of
compactly predefined value combinations and can only
capture partial couplings between values. This may result
in less expressive representation power in data with so-
phisticated value couplings, in particular high-dimensional
data, in which there exists a complex mixture of relevant
and irrelevant features. A very recent method called CBRW
[16] models the full value couplings to generate value-based
representation for categorical outlier detection, which shows
value-based representation is more fine-grained and flexible
than pattern-based methods. However, CBRW captures only
pairwise value interactions but not the high-order interac-
tions between values.

1.2 Contributions

This work captures the hierarchical value-to-value cluster
couplings, which reflect some intrinsic data characteristics
and complexities. Such value cluster couplings need to
be properly captured in data representations for different
learning tasks and application scenarios. However, this is
not trivial, and to our best knowledge, no work reported
properly handles this. Accordingly, this paper proposes a
flexible framework which captures the hierarchical value
couplings and can be instantiated to solve two contrastive
learning problems. The main contributions are as follows.
• A framework for Coupled Unsupervised categorical

data REpresentation (CURE for short) is proposed,
which has a hierarchical learning structure and is flexi-
ble enough to be instantiated. CURE defines multiple
value coupling functions for clustering values with
different granularities to capture the low-level complex
couplings between values. CURE further learns the
couplings between the multi-granularity value clusters
to incorporate high-order interactions between values
into our value-based data representation. This enables
CURE to capture the intrinsic data characteristics and
produce an effective numerical representation for cate-
gorical data with sophisticated couplings.

• CURE can handle contrastive unsupervised learning
tasks: clustering and outlier detection. For clustering,
we instantiate CURE into a Coupled Data Embedding
(CDE for short) model to capture majority-based hi-
erarchical value couplings. CDE utilizes the couplings
to embed categorical data into a new space with inde-
pendent dimensions and rich semantics. This creates a
meaningful Euclidean space for the subsequent object
clustering.

• For outlier detection, CURE is instantiated into a model
for the Coupled Outlier Scoring of High-dimensional
data (COSH for short) to capture minority-based hi-
erarchical value couplings. COSH uses the multi-
granularity value clusters to compute the most outlying
aspect of values, which enables it to obtain reliable
outlier scores in data sets with many irrelevant and
noisy features.

Substantial experiments show that (1) CDE significantly
outperforms three popular encoding methods: one-hot en-
coding (noted as 0-1), one-hot encoding with PCA (0-1P),
and inverse document frequency embedding (IDF), with
a maximum F-score improvement of 19%. It also gains
a maximum 8% F-score improvement over three state-of-
the-art similarity measures for clustering: COS [1], DILCA
[10] and ALGO [9] on 10 real-world data sets with dif-
ferent value coupling complexities; (2) COSH significantly
outperforms (by a maximum 67% AUC improvement) five
state-of-the-art outlier detection methods: CBRW [16], ZERO
[17], iForest [18], ABOD [19] and LOF [20] on 10 high-
dimensional data sets; (3) CDE and COSH obtain good
scalability: they are linear to data size and quadratic to the
number of features; and (4) CDE and COSH perform stably
and are insensitive to their parameters.

The rest of this paper is organized as follows. We discuss
the related work in Section 2. The CURE framework is
detailed in Section 3. Two complementary value coupling
functions are presented in Section 4. Two instances of CURE,
CDE and COSH, are introduced in Section 5. Experimental
results for clustering and outlier detection are provided
in Section 6 and Section 7, respectively. A discussion of
instantiating CURE is given in Section 8. The conclusion is
drawn in Section 9.

2 RELATED WORK

2.1 Representation for Clustering
Encoding methods are most widely used for categorical
data representation [21]. One popular method is one-hot
encoding which encodes each feature with a zero-one ma-
trix. Feature fi is encoded with |Vi|-dimensional vectors,
where each vector has a value ‘1’ corresponding to one
value, and all the rest of the entries are 0s. Although one-
hot coding is reversible with the original data, it assumes
that all values are independent and equal which often does
not conform to data characteristics. Also, one-hot encoding
results in very high dimensions if the original data has a
large number of values, and consequently, it may lead to the
curse of the dimensionality issue [22]. Dimension reduction
methods, like principal component analysis (PCA) [23], are
often conducted on a one-hot encoding matrix to alleviate
this issue. Another well-known method is IDF encoding [8]
which represents each value with the logarithm of its in-
verse frequency. IDF captures the value couplings from the
occurrence perspective. Although these encoding methods
are easy to implement and have good efficiency, they cannot
capture the complex value couplings in data.

Several effective embedding methods are available for
textual data, such as latent semantic indexing (LSI) [24],
latent Dirichlet allocation (LDA) [25], skip-gram [26] and
their variants [27], [28], [29]. However, categorical data has
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an explicit feature structure, which is very different from
unstructured textual data. These methods cannot be directly
applied to categorical data which is the focus of this work.

Similarity learning represents categorical data with an
object-object similarity matrix. Various similarity measures
have been designed to capture value couplings in data:
ALGO [9] uses the conditional probability of two feature
values to describe the value couplings; DILCA [10] and
DM [11] incorporate feature selection and feature weighting
into capturing feature couplings respectively; and COS [1]
takes inter- and intra-feature couplings into object similarity.
These similarity measures focus on capturing the pairwise
value couplings. They therefore fail to capture the couplings
among multiple values and higher order interactions, which
instead can be captured by CDE w.r.t. the couplings between
value clusters.

In addition, there are some embedding methods, e.g., in
[30], [31], which optimize the embedding on the similarity
matrix, but their results heavily rely on the underlying
similarity measures. Other embedding methods (e.g., [32],
[33]) require class labels to learn distance, and thus they are
inapplicable for unsupervised tasks.

2.2 Representation for Outlier Detection
Most existing outlier detection methods [12], [13], [14], [15]
for categorical data unify the two successive tasks - data
representation and outlier identification. These methods
often aim to identify a set of outlying/normal patterns to
represent the data objects. Such outlier detection-oriented
methods use scoring-based representation, which is very
different from embedding or similarity measures. They sep-
arate model learning from data representation learning and
focus on how to effectively transform the original data into a
meaningful space to well enable outlier detection. However,
these methods involve costly pattern discovery. As a result,
their computational time is prohibitive in high-dimensional
data. Also, these methods become ineffective in handling
data with many irrelevant/noisy features [16].

There have been some methods (e.g., in [16], [17], [34])
which are scalable for high-dimensional data. The method
CBRW [16] models the intra- and inter-feature value cou-
plings to estimate the outlierness of values and uses value
outlierness to represent the objects. CBRW is closely related
to COSH as it also attempts to use value outlierness to
represent data. CBRW avoids a costly pattern search and has
good scalability w.r.t. data dimensionality. However, CBRW
only captures pairwise value interactions and may fail to
work in data with higher-order value interactions, e.g., high-
dimensional data. The method ZERO++ [17] can efficiently
handle high-dimensional data by working on a random set
of feature subspaces, but the random subspace generation
may include many irrelevant features and downgrade its
performance on those data. The method ITB [34] identifies
a set of outliers so that the removal of these outliers from
the data mostly reduces entropy-based data uncertainty.
However, it uses the full feature sets to compute uncertainty
and is largely affected by irrelevant features, thus it becomes
less effective in high-dimensional data where outliers are
manifested in a small subset of features.

Some methods like ABOD [19] and iForest [18] for
high-dimensional numeric data may also be extended to
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Fig. 1. The CURE framework: Φ, η, Θ and ∆ can be customized
according to different tasks. By changing the dashed line boxed part,
we instantiate the framework into two instances: CDE and COSH.

handle categorical data by working on its embedding or
similarity-based numeric representation, but their perfor-
mance is heavily dependent on the effectiveness of the data
representation methods.

More importantly, all the above methods estimate the
outlier scores based on single-granularity outlierness repre-
sentation, i.e., outlierness estimation operates with the same
granularity. Our method COSH captures the outlierness
with a wide range of granularities. Our outlierness estima-
tion is therefore less likely to be biased by the overwhelming
irrelevant features in high-dimensional data.

3 THE CURE FRAMEWORK FOR CATEGORICAL
DATA REPRESENTATION

In this section, we introduce the CURE framework to model
hierarchical couplings between values and value clusters so
as to learn a numerical representation of categorical data. As
shown in Fig. 1, CURE first learns the low-level couplings
between values by several coupling functions. It then learns
value clusters with different granularities by clustering on
multiple value coupling matrices with different granularity
settings. CURE further learns the couplings between value
clusters to obtain the value representation and the object
representation.

Let X = {x1, x2, ..., xN} be a set of data objects with
size N , described by a set of D categorical features F =
{f1, ..., fD}. Each feature f (f ∈ F ) has a value domain
Vf = {v1, v2, ...} which consists of a finite set of possible
feature values (at least two values). The value domains of
different features are distinct, i.e., Vfi ∩ Vfj = ∅,∀i 6= j.
The whole value set of features is the union of all the value
domains: V = ∪f∈FVf , and the size of V is denoted as L.

The problem targeted in this work can then be stated
as follows. Given a set of data objects X , we aim to learn
the object numerical representation O of X . Following the
CURE framework, we firstly construct the value coupling
set Φ(X ) by learning value couplings. Secondly, we learn the
value clusters in the value clustering process Ωη . Thirdly, the
couplings between value clusters are learned in the coupling
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learning process Θ. Finally, the object representation are
learned by ∆. The four components of CURE: Φ, Ωη , Θ and
∆ are introduced in detail in the following sections.

3.1 Learning Value Couplings
Value couplings refer to the interactions of feature values
which may include the interactions between values from the
same feature and interactions between values from different
features. Such value couplings reflect the low-level interac-
tions between values. The more value couplings are learned
will be of more benefit to the following value clusters. The
definition of the value coupling set is given as follows.

Definition 1 (Value Coupling Set). The value coupling set
Φ(X ) is defined as a set of multiple value coupling functions
with size of n to capture the low level pairwise value couplings:

Φ(X ) = {φi(X ), i = 1, 2, .., n}, (1)

where φi(·) : X 7→ Mi ∈ RL×L is one kind of value coupling
functions to capture the value couplings from one specific per-
spective. The output of φi is a value coupling matrix Mi which
consists of couplings between each value pair.

These value coupling matrices are decided by the value
coupling functions and reflect the low-level data charac-
teristics. The value coupling functions can be specified
from several aspects [6], [35], e.g., occurrence-based and
co-occurrence-based functions, set theory-based functions
(such as intersection of value sets), value neighbourhood-
based functions, and/or non co-occurrence-based functions.
Good value coupling functions should capture different
kinds of couplings.

3.2 Learning Value Clusters
A value cluster refers to the value set which consists of mul-
tiple similar values. The value clusters reflect the couplings
among multiple values instead of pairwise value coupling,
e.g., all values belong to one super value cluster at the
coarsest granularity while each value is a cluster at the finest
granularity. The definition of the value clustering process is
given as follows.

Definition 2 (Value Clustering Process). The value clustering
process w.r.t. value coupling matrix M consists of multiple
clustering on value coupling matrices with different granularities,
which is defined as follows:

Ωη = {ηi(Mi, s
i
j), j = 1, 2, ..., qi}, (2)

where ηi is the one clustering process on the value coupling
matrix Mi, and sij is the clustering parameter which decides the
granularity of clusters. The output of ηi is a value cluster matrix
Ci ∈ RL×q

i

.

The value clustering process can be done by various
clustering methods, e.g., centroid-based clustering algo-
rithm, hierarchical clustering algorithms, distribution-based
clustering, and density-based clustering algorithms. The
granularities of value clusters can be decided by the pre-
defined algorithm parameters, e.g., the cluster number, and
the density range parameter. Different clustering algorithms
prefer different kinds of clusters. For example, centroid-
based clustering algorithms capture the convex shape of

clusters, while density-based clustering algorithms are able
to capture the manifold shape of clusters. We can conduct
different clustering algorithms on different value coupling
matrices or apply only one clustering algorithm on all
coupling matrices with different parameters. The choice of
clustering process is decided by the cluster characteristics
captured by the clustering algorithm and its efficiency.

3.3 Learning Couplings between Value Clusters

The value clusters learned by clustering may contain cou-
plings and redundancy. By learning the complex couplings
between value clusters, CURE learns the meaningful value
representation. The definition of coupling learning between
value clusters is defined as follows.

Definition 3 (Coupling Learning Between Value Clusters).
The coupling learning process Θ between value clusters is defined
as follows:

V = Θ{C1, ...,Cn}, (3)

where Ci is one value cluster matrix and V ∈ RL×
∑n

i=1 q
i

is the
value representation matrix.

The coupling learning process between value clusters
aims to learn the couplings between different value clusters
and tries to eliminate the redundancy information among
value clusters. Accordingly, Θ can be implemented by a di-
mensionality reduction process, a relation learning process,
or an embedding model, e.g., PCA, LDA, matrix factoriza-
tion, or a neural network. The choice of Θ depends on the
data characteristics and the subsequent learning tasks.

3.4 Learning Object Representation

With the value representation, we further model the object
representation.

Definition 4 (Object Representation Learning Function). The
representation of an object x (x ∈ X ) is modelled by an object
representation function w.r.t. value representations V:

Ox = ∆(Vx
1 , ...,V

x
D), (4)

where Vx
i is the value representation of object x from feature fi.

The function ∆(·) utilizes value representations to assign
each object a numerical vector for object representation. The
function can be specified according to learning applications
and purpose, e.g., by concatenation, weighted sum, or max-
imum.

4 COMPLEMENTARY VALUE COUPLINGS

In this paper, we instantiate the CURE framework into two
instances: CDE for clustering and COSH for outlier detec-
tion according to their different learning goals. Both CDE
and COSH are based on the same value coupling functions,
which is the base for learning further value clusters. In this
section, we introduce the two value coupling functions and
prove their complementary discriminative ability.
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4.1 Two Value Coupling Functions

To learn value couplings, we construct two value influence
matrices to capture the value couplings from two basic
perspectives: occurrence and co-occurrence, whose comple-
mentary discriminative ability is proved in Section 4.2. Be-
fore introducing the value influence matrices, we introduce
some preliminaries.

The value from feature f of object x is denoted by vfx
and the feature to which the value vi belongs is denoted
as fi. We assume that the probability p(v) of a value can
be computed by its frequency. The joint probability of two

values vi and vj is p(vi, vj) =
|{vfix =vi∩v

fj
x =vj ,x∈X}|
N .

We define the normalized mutual information [36] ψ to
reflect the relation between two features as follows:

ψ(fa, fb) =

2
∑

vi∈Vfa

∑
vj∈Vfb

p(vi, vj)log
p(vi,vj)
p(vi)p(vj)

h(fa) + h(fb)
, (5)

where h(fa) = −
∑
vi∈Vfa

p(vi)log(p(vi)).

Definition 5 (Occurrence-based Value Influence Matrix).
The occurrence-based value influence matrix Mo is defined as
follows:

Mo =

φo(v1, v1) . . . φo(v1, vL)
...

. . .
...

φo(vL, v1) . . . φo(vL, vL)

 , (6)

where the coupling function φo(vi, vj) = ψ(fi, fj) × p(vj)
p(vi)

,
indicating the occurrence influence on value vi from value vj .

The occurrence (or marginal) probability is the basic
univariate property of values, which can be used to dif-
ferentiate values. Instead of using a symmetric distance
measure between the marginal probabilities of two values,
we use an asymmetric ratio to quantify the influence on one
value from another so that Mo captures more information.
Furthermore, we incorporate mutual information ψ as the
weight of value couplings since marginal probabilities can-
not differentiate features.

Definition 6 (Co-occurrence-based Value Influence Matrix).
The co-occurrence-based value influence matrix Mc is defined as
follows:

Mc =

φc(v1, v1) . . . φc(v1, vL)
...

. . .
...

φc(vL, v1) . . . φc(vL, vL)

 , (7)

where the coupling function φc(vi, vj) =
p(vi,vj)
p(vi)

indicates the
co-occurrence influence on value vi from value vj .

The co-occurrence (or joint) probability reflects the basic
bivariate couplings between two values. We use asymmetric
conditional probability to define the influence on one value
from another value since the same joint probability may
have a different influence on values with different marginal
probabilities. The φc value of two values from the same
feature always equals 0 since they never co-occur in the
same object.

4.2 Complementary Discriminative Ability

The two coupling functions are complementary and dis-
criminative for the values, which can be verified by the
distance of Mo and Mc. As we illustrate CDE and COSH
to learn value clusters by k-means clustering, we thus take
the Euclidean distance as an example to show the comple-
mentary discriminative ability of these two value coupling
functions.

The distance matrix in k-means clustering determines
the quality of value clusters. By proving the complementary
discriminative ability of the two distance matrices, we can
observe that the two value couplings have a complementary
discriminative ability.

The occurrence distance between values vi and vj is
defined as follows:

do(vi, vj) =

√√√√ L∑
h=1

(φo(vi, vh)− φo(vj , vh))2, (8)

where φo(vi, vh) is the occurrence coupling function defined
in Definition 5, and L is the number of values.

The co-occurrence distance between values vi and vj is
defined as follows:

dc(vi, vj) =

√√√√ L∑
h=1

(φc(vi, vh)− φc(vj , vh))2, (9)

where φc(vi, vh) is the co-occurrence coupling function de-
fined in Definition 6. If any two distinct values can be dis-
tinguished by do or dc, then do and dc are complementary.

Theorem 1 (Distance Complementarity). For any two values
vi 6= vj , do(vi, vj) 6= 0 or dc(vi, vj) 6= 0.

Proof. To prove the above theorem, we prove that vi 6= vj
and do(vi, vj) = 0 satisfy dc(vi, vj) 6= 0 for all cases and
vi 6= vj and dc(vi, vj) = 0 satisfy dc(vi, vj) 6= 0 for all cases.

We first prove that vi 6= vj and do(vi, vj) = 0 satisfy
dc(vi, vj) 6= 0 for all cases. If dc(vi, vj) = 0, then ∀vh ∈
V, φc(vi, vh) = φc(vj , vh). To prove dc(vi, vj) 6= 0, we only
need to prove ∃vh ∈ V, φc(vi, vh) 6= φc(vj , vh). We consider
the proof for the following cases.

(1) If vi and vj belong to the same feature which means
ψ(fi, fh) = ψ(fj , fh), then do(vi, vj) = 0 if and only if
p(vi) = p(vj). Let vh = vi, then φc(vi, vh) = 1 and
φc(vj , vh) = 0 since vi, vj belong to the same feature. Hence,
dc(vi, vj) 6= 0 when vi and vj belong to the same feature.

(2) If vi and vj belong to different features, and
do(vi, vj) = 0 which means ∀vh ∈ V, ψ(fi, fh)p(vh)p(vi)

=

ψ(fj , fh)p(vh)p(vj)
; When ψ(fi, fh) 6= ψ(fj , fh) and p(vi) 6=

p(vj) (suppose p(vi) < p(vj)), then p(vi, vj) < p(vj).
Let vh = vi, then φc(vi, vh) = 1 and φc(vj , vh) > 0.
Accordingly, dc(vi, vj) 6= 0 when p(vi) 6= p(vj). When
ψ(fi, fh) = ψ(fj , fh) and p(vi) = p(vj), ∃vh in feature
fi and p(vj , vh) > 0, but p(vi, vh) = 0, then φc(vj , vh) 6=
φc(vi, vh). Therefore, dc(vi, vj) 6= 0 when vi and vj belong
to different features.

Further, we prove vi 6= vj and dc(vi, vj) = 0 satisfy
do(vi, vj) 6= 0 for all cases. We consider the proof for the
following cases.
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(1) If vi and vj belong to the same feature, then we could
let vh = vi so that φc(vi, vh) = 1 and φc(vi, vh) = 0. Then
we can prove that do(vi, vj) 6= 0.

(2) If vi and vj belong to different features, then we could
consider p(vi) = p(vj) or p(vi) 6= p(vj). If p(vi) = p(vj) and
dc(vi, vj) = 0, then ψ(fi, fh) = 1 which is impossible for
different features. Otherwise, we could let vh = vi (suppose
p(vi) < p(vj)) then φc(vi, vh) = 1 and φc(vj , vh) < 0, and
dc(vi, vj) cannot be 0. So if dc(vi, vj) = 0, then vi and vj
must belong to the same feature.

The above theorem shows that the two value couplings
are able to distinguish any two different values. For cluster-
ing, the theorem says that at least one clustering process is
able to differentiate any two values in an extreme case where
each value belongs to one cluster. For outlier detection, the
theorem states that the outlier detector could differentiate
the outlying behaviors between any two values. For differ-
ent applications, we can enhance the discriminative ability
from a specific aspect by utilizing different information of
value clusters. The following section demonstrates how to
utilize the value couplings to learn the value clusters and
the couplings between the value clusters for different goals.

5 TWO CONTRASTIVE CURE INSTANCES

In this section, we show two instances of CURE: CDE
for clustering and COSH for outlier detection in high-
dimensional data. CDE and COSH use the above value
couplings, but they use different methods to learn the value
clusters and the couplings between the value clusters.

5.1 CDE: A CURE Instance for Clustering
We instantiate CURE as CDE for clustering. CDE aims to
capture the couplings among majority values based on the
above value couplings. CDE learns the value clusters with
different granularities by multiple k-means clusterings with
different cluster numbers k. By filtering the value clusters
which have less discriminative information for majority
values, CDE differentiates values according to the value-
to-value cluster affiliation. Based on the information in the
filtered value clusters, CDE learns the couplings between
the value clusters with PCA. The object embedding is the
concatenation of value representation.

5.1.1 Learning Value Clusters for Clustering
Based on the two value influence matrices, we can learn the
value clusters with different granularities which represent
different semantics and well reflect the data characteristics.
To learn the value clusters with different granularities, here
we conduct clustering on the value matrices with different
cluster numbers.

We conduct k-means clustering on Mo with different k,
i.e., {k1, k2, ..., kno}, and on Mc with {k1, k2, ..., knc}. The
clustering results are represented by a cluster membership
indicator matrix CI, which is defined as follows:

CI(i, j) =

{
1 if vi is in cluster j,
0 if vi is not in cluster j.

(10)

For the majority values, the value cluster with a small
number of values has less discriminative information since

CDE aims to generate the value clusters which can dif-
ferentiate more values. Accordingly, we remove the small
value clusters which only have one value. k is also decided
by the removed small clusters which will be discussed
in Section 5.1.3. We further concatenate the two indicator
matrices derived from the two value influence matrices and
get a large indicator matrix to represent each value whose
dimensionality is no more than (

∑no

i=1 ki +
∑nc

j=1 kj).
k-means clustering is chosen for two major reasons:

(1) The value influence matrices are numerical and the
Euclidean distance fed to the k-means clustering captures
the global relations between values. (2) k-means clustering
is linear w.r.t. the size of the input matrix, which enables
CDE to efficiently learn value clusters with different sizes.

5.1.2 Learning Linear Couplings between Value Clusters
The indicator matrix CI conveys rich couplings between
the value clusters with different granularities based on two
value influence matrices. For simplicity, we here consider a
simple type of couplings between value clusters – linear cor-
relations and apply PCA on the indicator matrix to eliminate
the linear correlations between value clusters to obtain a
vector embedding for each value. PCA is chosen because (1)
it reduces the data complexity with little loss of information
by converting a matrix with linearly correlated variables to
a new matrix with linearly uncorrelated components, and
(2) it substantially reduces the dimensionality of the value
embedding, which enables us to represent an object in a
considerably lower-dimensional embedding space.

The indicator matrix CI conveys rich couplings between
the value clusters with different granularities based on two
value influence matrices. For simplicity, we here consider a
simple type of couplings between value clusters – linear cor-
relations and apply PCA on the indicator matrix to eliminate
the linear correlations between value clusters to obtain a
vector embedding for each value. PCA is chosen because (1)
it reduces the data complexity with little loss of information
by converting a matrix with linearly correlated variables to
a new matrix with linearly uncorrelated components, and
(2) it substantially reduces the dimensionality of the value
embedding, which enables us to represent an object in a
considerably lower-dimensional embedding space.

We first calculate the centralized matrix Z of the indi-
cator matrix CI by subtracting the mean of each column
and further derive a covariance matrix S from Z. The
value embedding V is obtained by the following matrix
decomposition:

V = ZYT , (11)

where Y is the principal component matrix derived from
the singular value decomposition results of S, i.e., S =
UΣY.

After the PCA transformation, the dimensions of value
embedding V are independent of each other so that the
algebraic operations in the Euclidean space can be used on
the embedded matrix.

5.1.3 The CDE Algorithm
Algorithm 1 presents the main procedures of CDE. The first
step generates the value influence matrices Mo and Mc

according to Definitions (5) and (6) by scanning the original
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Algorithm 1 CDE (D, α, β)
Input: D - data set, α - proportion factor, β - dimension

reducing factor
Output: O - the numerical representation of objects

1: Generate Mo and Mc

2: Initialize CI = ∅
3: for M ∈ {Mo,Mc} do
4: Initialize k = 2
5: Cs = ∅
6: repeat
7: CI = [CI; kmeans(M, k)]
8: Store the clusters with one value in Cs
9: Remove the clusters with one value from CI

10: k+ = 1
11: until length(Cs)k ≥ α
12: end for
13: Z = CI −mean(CI)
14: [U, Σ, Y] = SVD (S), S is the covariance matrix of Z
15: V = ZYT

16: Remove the columns whose range (maximum element
minus minimum element) is less than β from V.

17: Generate O by the concatenation of V
18: return O

data matrix. Specifically, we scan the data matrix by rows.
For each row, we scan it by columns two times, and then we
get the co-occurrences of any two values. After scanning all
the rows, we calculate the frequency of any value. Then we
calculate the coupling functions.

k is the clustering parameter which decides the granu-
larity of value clusters. Instead of setting k to a fixed value,
we use another proportion factor α to decide the maximum
cluster number, as shown in Steps (6-10) of Algorithm 1. The
clusters that only have one value are meaningless to value
cluster. Therefore, we remove these small clusters with only
one value by controlling the proportion of small clusters
through α. With the increasing of k more small clusters
are generated. Until the proportion of small clusters, i.e.,
length(Cs)

k , exceeds α, we stop increasing k whose initial
value is 2. The final CI is the concatenation of all clustering
results with different k from Mo and Mc.

After conducting PCA on the indicator matrix to learn
the correlations between value clusters, we treat V as the
original representation of values where each column repre-
sents a dimension. Since the distance between two values
is the sum of the distance on each dimension, the columns
with a small range make less contribution to the final dis-
tance. We remove those columns whose range (maximum el-
ement minus minimum element) is less than β from original
representation V. In this way, we control the dimension of
the representation in a flexible data-dependent way. Finally,
we calculate the object embedding O by concatenating the
embedding vectors of its values from V.

We generate Mo and Mc through the value frequency
vector and co-occurrence matrix. Scanning the data set and
counting the frequency of all values and co-occurrences of
all value pairs incur the complexity of O(ND2). Generat-
ing Mo and Mc based on the frequency vector and co-
occurrence matrix incurs the complexity of O(L2). The total
number of clustering times is (kmax − 1) due to that kmax

increases from 2. Then clustering on the value matrix has
complexity O(kmaxL) since k-means clustering has linear
complexity w.r.t. the size of the input matrix. The number
of value clusters is proportional to k2max and then PCA has
O(k6max). With the numerical representation of values, gen-
erating the embedding matrix of objects has O(ND). The
computational complexity of CDE is O(ND2 +L2 + k6max).
Since kmax does not increase w.r.t. D and N and kmax is a
relatively small constant, k6max is much smaller than ND2.
And in real datasets, the average number of values per
feature is often small, so L2 is similar to D2. Approximately,
the time complexity of CDE is O(ND2).

5.2 COSH: A CURE Instance for Outlier Detection in
High-dimensional Data
Here we further instantiate CURE to another instance COSH
for outlier detection in high-dimensional data which con-
tains complex value interactions and has been insufficiently
explored. COSH uses the same clustering methods, i.e., k-
means, to learn multi-granularity value clusters. Different
from CDE that abandons small value clusters, COSH retains
them as they reflect the outlying behaviors of values. Unlike
CDE which uses binary cluster membership to represent
the value clusters, COSH represents them with continuous
dissimilarity between values and cluster centers to better
quantify the outlying behaviors of values. Based on the dis-
similarity of value clusters, COSH learns couplings between
value clusters. The object representation is the vector with
outlying score of each value.

5.2.1 Learning Value Clusters for Outlier
In COSH, we also conduct k-means clustering on the two
value coupling matrices. In addition to the reasons ex-
plained in Section 5.1.1, the sensitivity of k-means clustering
is an important reason of using it to learn value clusters for
outlier detection.

Instead of indicator matrix, we use the value-cluster
dissimilarity matrix to represent the clustering result for
each clustering process. The definition of value-cluster dis-
similarity matrix Ck w.r.t. cluster number k is below:

Ck =

dis(v1, c1) . . . dis(v1, ck)
...

. . .
...

dis(vL, c1) . . . dis(vL, ck)

 , (12)

where v is a row of a value coupling matrix M, c is the
centroid vector of one cluster. dis is defined as follows:

d(v, c) =


0 , if v and c are in different clusters

max(0,
L∑
i=1

c(i)− v(i)), otherwise.
(13)

The use of the above asymmetry dissimilarity measure
instead of distance measures, e.g., Euclidean distance, is
decided by the semantic meaning of Mo and Mc. There
is a basic assumption that outlying values are infrequent
among all values. The value coupling matrices Mo and Mc

are correlated with value frequency. Hence, a smaller value
from Mo and Mc indicates the greater likelihood that it
could be an outlying value. Further, a value smaller than
the centroid has a larger chance of being an outlier than a
value larger than the centroid.
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Algorithm 2 COSH (D, α)
Input: D - data set, α - proportion factor
Output: O - the outlier scores of all objects

1: Generate Mo and Mc

2: Initialize i = 0
3: for M ∈ {Mo,Mc} do
4: Initialize k = ∅ and j = 2
5: Cs = ∅
6: repeat
7: k(i) = j
8: Ci = kmeans(M,k(i))
9: Calculate Di

10: Store the clusters with one value in Cs
11: j+ = 1 and i+ = 1
12: until length(Cs)k(i) ≥ α
13: end for
14: V = maxe{CqDq1k(q), q = 1, 2, ..., i},
15: for each x ∈ X do
16: Ox = [Vx

1 , ...,V
x
D]

17: end for
18: return O

5.2.2 Learning Outlying Couplings between Value Clusters
We consider two properties of the outlying value and the
outlying value cluster: (1) The outlying value is quite dif-
ferent from the centroid. (2) The outlier cluster is quite
different from the other clusters. The value cluster matrix
Ck defined in Section 5.2.1 has considered the difference
between a value and the centroid. We use another cluster-
cluster matrix to incorporate the outlying couplings of value
clusters, which is defined as follows:

Dk =

dis(c1, c1) . . . dis(c1, ck)
...

. . .
...

dis(ck, c1) . . . dis(ck, ck)

 , (14)

where dis(·) is the dissimilarity defined in Equation 13.
Based on these two properties, we learn the value outlier

scores w.r.t. to the value cluster difference matrix Ck and
cluster-cluster matrix Dk as follows:

V = maxe{Ck1Dk11k1 ,C
k2Dk21k2 , ...}, (15)

where 1k is a vector with size k of ones, maxe chooses the
element-wise maximum value across different vectors. Each
entry in V is the outlier score for one value. Large entry
values indicate higher outlierness.

The outlier object representation O for object x ∈ X is
[Vx

1 , ...,V
x
D]. The outlier score of object x is the summation

of the value outlying scores, which is outlier(x) =
∑D
j Vx

j .

5.2.3 The COSH Method
Algorithm 2 presents the main procedures of COSH, which
is similar to CDE. Different from CDE, COSH represents a
value cluster with Ci and computes the dissimilarity be-
tween the value clusters in Steps (8-9); COSH uses different
methods to represent values as shown in Steps (14-16).

As shown in Section 5.1.3, generating Mo and Mc takes
the complexity of O(ND2 + L2) and clustering on the
matrices has complexity O(kmaxL). Computing the outlier
scores of values has complexity O(Lk2max), where kmax is

the number of times for clustering on one value matrix
which is much less than L. With the outlier scores of values,
generating the outlier scores of objects has O(ND). In real
datasets, the average number of values per feature is often
small, so L2 is similar to D2. Correspondingly, the time
complexity of COSH is O(ND2).

5.3 Contrastive Analysis of CDE and COSH
CDE and COSH are both instantiated from CURE which is
based on hierarchical value coupling learning. The shared
base between CDE and COSH is the two value coupling
functions which are shown to be complementary and dis-
criminative in Section 4.2. However, the other parts, i.e.,
value cluster learning and coupling learning between value
clusters, are customized according to the different goals of
CDE and COSH. In this section, we compare these compo-
nents and analyze the intrinsic motivation of these instances.

5.3.1 Contrastive Value Clustering
The value clusters contain abundant information so that
value clusters can be customized flexibly according to dif-
ferent applications. In the following section, we analyze
why CDE and COSH use different value cluster learning
strategies to achieve different goals.

When generating value clusters, CDE removes the small
value clusters because the small value clusters have less
discriminative ability for majority values and contribute
less to the final clustering process. Meanwhile, COSH keeps
all the small value clusters or prefers small value clusters
since small clusters have a higher discriminative ability for
outlying values and contribute more to outlier detection.

When representing value clusters, CDE uses the cluster
membership indicator matrix CI which keeps consensus
information and differentiates values from different value
clusters. Further, by multiple clustering with different clus-
ter numbers, the value clusters group values from different
granularities and keep different levels of consensus informa-
tion which is helpful to distinguish similar values. Different
from CDE, COSH uses the value-cluster dissimilarity matrix
Ck to represent value clusters which is able to differentiate
two values within or across value clusters. Ck keeps the
most distinguishable information for each value, so that
COSH can use it to give each value an outlying score and
differentiate the outlier values from normal values.

5.3.2 Contrastive Value Cluster Coupling Learning
Since CDE and COSH use different learning strategies to
learn the value clusters, the couplings between value clus-
ters are different. In the following section, we analyze why
CDE and COSH learn different couplings between value
clusters and use different representations.

CDE uses the concatenation of multiple cluster mem-
bership matrices to represent values, and one dimension
of value representation corresponds to one value cluster.
Since value clusters are generated by the same clustering
methods, there are redundancy and correlations in value
representation. It is better for CDE to keep all the useful
discriminative information in addition to redundancy since
it is designed for clustering. Meanwhile, we expect that
the dimensions of new representation are independent and
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uncorrelated so that the algebraic operations can be applied
for the further learning tasks. Therefore, we use PCA which
does not cause any information loss to eliminate the redun-
dancy and learn linear correlative couplings in CI.

COSH is designed for outlier detection which empha-
sizes the outlying behaviors of values and value clusters.
Accordingly, COSH uses the dissimilarity matrix Dk to
quantify the outlying couplings between value clusters. The
value cluster which is far from the other value clusters could
be regarded as the outlying value cluster in which the values
have greater likelihood of being outlying values. Each value
cluster produces one outlying score for each value which
is concise and is enough to distinguish the normal values
and outliers. Furthermore, the maximum operation across
all the outlying scores from different value clusters ensure
that COSH cannot miss any outlying value.

6 EXPERIMENTS FOR CLUSTERING

6.1 Experiment Settings
6.1.1 Data Representation Methods and Parameter Set-
tings
To test the embedding performance, CDE is compared with
three commonly-used encoding methods for categorical
data: 0-1, 0-1P, and IDF. The 0-1 representation keeps the
most complete information in the original data. The 0-1P
incorporates feature correlations into the representation. IDF
differentiates values w.r.t. frequency.

To the best of our knowledge, no existing embedding
methods capture the value couplings in categorical data as
in CDE. To test the CDE-based learning performance, we
compute the Gaussian similarity based on CDE (denoted
by CDEG) and compare it with three typical and well-
performing similarity measures which involve feature re-
lations: COS [1], DILCA [10] and ALGO [9].

In Table 2, |C| is the number of ground-truth classes in
data, which is used for the clustering evaluation. We set
parameter α = 10 in CDE and parameter β = 10−10 in PCA
used by CDE and 0-1P. In COS, DILCA and ALGO, we use
the default parameters in their original papers.

6.1.2 Data Representation Evaluation Methods
We apply CDE and other representation methods to K-
means clustering to evaluate their performance. These rep-
resentation methods transform categorical data into nu-
merical data, hence k-means clustering can cluster objects
without computing the pairwise object similarity matrix.
Spectral clustering is used to evaluate the performance of
this object similarity matrix against other object similarity
matrices obtained by CDEG, COS, DILCA and ALGO.

F-score and NMI [37] are two popular evaluation meth-
ods. Since we fix the cluster number to the number of classes
in each data set for evaluation, NMI performs similarly to F-
score. Here we only report the results of F-score. A higher F-
score indicates better clustering accuracy driven by a better
representation method. The p-value results are based on
the paired two-tailed t-test using the null hypothesis as the
clustering results of CDE and other methods come from
distributions with equal means. For each data set, the F-
score is the average over 50 validations of clustering with
distinct starting points.

CDE and other comparison methods are implemented
in MATLAB and clustering experiments are performed at
3.4GHz Titan Cluster with 96GB memory.

6.1.3 Data Indicators for Clustering
We use ten real-world UCI data sets from different domains
for the experiments.1 The basic data information consists of
data size (denoted by |X |), the number of features (denoted
by |F|), the number of feature values (denoted by |V|), and
the number of classes (denoted by |C|) for clustering, as
demonstrated in Table 1 and Table 2.

Various data indicators are used to measure the underly-
ing characteristics of data sets, which are associated with the
learning performance of representation methods. Two key
data indicators and their quantization are defined below,
and the results are reported in Table 1 and Table 2.
• The feature correlation index (FCI) measures the average

correlation strength between features:

FCI =
2

D(D − 1)

D−1∑
i=1

D∑
j=i

SU(fi, fj) (16)

SU measures the correlation between features fi and
fj by the symmetric uncertainty [38]. A larger FCI
indicates a stronger correlation between features.

• The value cluster index (V CI) is the average of the
maximum non-overlapping ratio between value sets
contained in different classes for each feature:

V CI =
1

D

D∑
h=1

maxi,j{1−
|VhCi

⋂
VhCj
|

|VhCi

⋃
VhCj
|
} (17)

where VhCi
is the value set in class Ci for feature fh.

Larger VCI indicates the higher discriminative ability
of the value sets.

6.2 Evaluation Results
CDE is firstly compared with three encoding methods, fol-
lowed by a comparison with three similarity measures. We
then conduct the scalability and sensitivity test of CDE.

6.2.1 Comparison with Three Encoding Methods
The F-scores of CDE, compared with 0-1, 0-1P and IDF, are
shown in Table 1. CDE obtains the best F-score performance
on seven data sets, which are significantly better than the
other encoding methods. On average, it demonstrates an
approximate 9%, 5% and 19% improvement over 0-1, 0-
1P and IDF, respectively. The significance test results show
that CDE significantly outperforms these three encoding
methods at the 95% confidence level.

According to the data indicator FCI , the F-score per-
formance of CDE, 0-1 and 0-1P has a downward trend
with the decrease of FCI . CDE outperforms all the other
encoding methods. This is because CDE is able to capture
more sophisticated pairwise feature correlation than the
other methods, which is illustrated by the performance on
data sets with higher FCI , e.g., Wisconsin, Soybeansmall,
Mammographic, Zoo, Dermatology. This also explains the im-
provement of 0-1P over 0-1. In addition to the couplings

1. https://archive.ics.uci.edu/ml/datasets.html
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TABLE 1
F-score Results of CDE vs. Three Encoding Methods by k -means

Clustering on 10 Data Sets. The best performance for each data set is
boldfaced. The datasets are sorted in descending order of FCI.

Basic Data Info. & Data Indicator F-score

Data |X | |V| FCI CDE 0-1 0-1P IDF
Wisconsin 683 89 0.212 0.967 0.946 0.946 0.943
Soybeansmall 47 58 0.180 0.915 0.829 0.854 0.763
Mushroom 5644 97 0.148 0.731 0.709 0.694 0.506
Mammographic 830 20 0.116 0.809 0.793 0.815 0.517
Zoo 101 30 0.110 0.647 0.596 0.607 0.537
Dermatology 366 129 0.089 0.670 0.598 0.606 0.616
Hepatitis 155 36 0.085 0.680 0.681 0.667 0.535
Adult 30162 98 0.060 0.654 0.585 0.588 0.479
Lymphography 148 59 0.057 0.418 0.381 0.379 0.561
Primarytumor 339 42 0.020 0.240 0.230 0.238 0.190
Average 0.673 0.635 0.640 0.565

p-value 0.003 0.003 0.020

between features, CDE also captures the couplings across
the values clusters, which means CDE performs well on
data sets with high-order feature correlation, e.g., Adult and
Primarytumor which have lower FCI but may have high-
order feature correlation. IDF is only sensitive to value
frequency couplings, i.e., φo, while CDE is based on φo
and φc which capture two complementary discriminative
couplings. This explains why IDF can only obtain good
results on the data sets where objects are discriminative in
terms of value frequency, e.g., Lymphography.

6.2.2 Comparison with Three Similarity Measures

CDEG is compared with three well-performing feature
relation-based similarity measures: COS, DILCA and
ALGO. As shown in Table 2, although COS and DILCA
obtain the best performance on two data sets, CDEG remains
the best performer on half of the data sets. CDEG obtains
about 8%, 3% and 5% improvement over COS, DILCA and
ALGO respectively in terms of F-score. The significance test
results show that CDEG significantly outperforms the other
similarity measures at the 90% confidence level. It is noted
that tests on COS, DILCA and ALGO on data set Adult run
out of memory since the computation of object similarity
needs a large amount of memory.

CDEG achieves better performance than the other sim-
ilarity measures, especially on data sets with larger VCI
and larger |C|, e.g., Primarytumor, Zoo, Soybeansmall, Lympho-
graph. This is because CDEG learns the value clusters with
different granularities and considers the couplings between
these value clusters, which enables CDEG to obtain more
faithful value similarities than the other similarity measures
that do not consider such couplings. Also, compared to the
performance of 0-1, 0-1P and IDF shown in Table 1, the
performance of similarity measures is better on the data sets
with higher FCI, e.g., Wisconsin, Soybeansmall, Mushroom,
Mammographic according to Table 2 . This is because CDEG,
COS, DILCA and ALGO are able to capture the pairwise
relations between features.

6.2.3 Scalability Test

We use five subsets of the largest data set Adult to test the
scalability w.r.t. data size. All these subsets contain eight
features. The execution time excludes the running time of

TABLE 2
F-score Results of CDE-G vs. Three Similarity Measures by Spectral

Clustering on 10 Data Sets. COS, DILCA and ALGO run out of memory
on Adult. The average values are computed according to the data sets

except Adult.

Basic Data Info. & Data Indicator F-score

Data |F| |C| V CI CDEG COS DILCA ALGO
Wisconsin 9 2 0.237 0.962 0.973 0.921 0.971
Soybeansmall 21 4 0.712 1.000 0.893 0.910 0.911
Mushroom 21 2 0.310 0.828 0.825 0.826 0.826
Mammographic 4 2 0.071 0.817 0.828 0.826 0.818
Zoo 15 7 0.733 0.644 0.538 0.583 0.547
Dermatology 33 6 0.664 0.784 0.730 0.808 0.710
Hepatitis 13 2 0.141 0.667 0.463 0.679 0.662
Adult 8 2 0.032 0.676 NA NA NA
Lymphography 18 4 0.699 0.397 0.395 0.353 0.366
Primarytumor 17 21 0.873 0.242 0.196 0.224 0.209
Average 0.704 0.649 0.681 0.669

p-value 0.050 0.100 0.032

1875 3750 7500 15000 30000

Data Size

0

20

40

60

80

100

120

E
x
e
c
u

ti
o
n

 T
im

e
 (

in
 s

e
c
o
n

d
s)

CDE

0-1

0-1P

IDF

DILCA

COS

ALGO

25 50 100 200 400

Data Dimensionality

0

500

1000

1500

2000

E
x
e
c
u

ti
o
n

 T
im

e
 (

in
 s

e
c
o
n

d
s)

CDE

0-1

0-1P

IDF

DILCA

COS

ALGO

Fig. 2. Scalability Test Results.

clustering. In terms of scalability w.r.t the number of fea-
tures, we generate five synthetic data sets with the smallest
dimension of 25 and the largest dimension of 400. Each
feature has two values which are randomly distributed. All
the synthetic data sets have 10,000 objects.

The left panel of Fig. 2 shows that, CDE runs signifi-
cantly faster than COS, DILCA and ALGO and one order
magnitude slower than 0-1, 0-1P and IDF encoding. This is
because CDE is linear to the data size (N ), while DILCA
has O(N2D2logD), COS has O(N2D3R3), and ALGO has
O(N2D2 + D2R3), where R denotes the maximum num-
ber of distinct values for each feature. The right panel of
Fig. 2 shows that CDE has a similar runtime with COS
and DILCA, and they run considerably slower than ALGO
because ALGO is quadratic to the number of features (D)
according to the computational complexity. All coupled
methods run much slower than the encoding methods, i.e.,
0-1, 0-1P and IDF, since modeling complex value interac-
tions and/or feature correlations is costly.

6.2.4 Sensitivity Test

There are two parameters in CDE: α controls the dimension
of value embedding before PCA and β controls the dimen-
sion of value embedding after PCA. Since the results on all
data sets have a similar trend, we demonstrate the results of
four data sets: Adult, Dermatology, Wisconsin, Primarytumor,
which have the largest |O|, largest |V |, largest FCI and
largest V CI , respectively.

Fig. 3 shows the dimension of value embedding before
PCA and the clustering performance with different α which
directly influences the value of k in Algorithm 1. k deter-
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mines the granularity of value clusters which constitutes the
original value embedding. Since we only drop the clusters
with only one value, the clustering performance is stable
with parameter α. According to Fig. 3, the dimension is
stable when α ≥ 10.

Fig. 4 shows the dimension of the final value embedding
and the clustering performance w.r.t. β which influences
the dimension of the embedding matrix during the PCA
process. The smaller the β value, the higher the dimension
of the value embedding vector. This shows that the perfor-
mance of the clustering is stable w.r.t. β. When β ≥ 10−15,
the dimension of the value embedding vectors decreases
with the increase of β on all data sets.

As shown in Fig. 3 and Fig. 4, the clustering performance
is not sensitive to parameters α and β. The dimension is
stable when α ≥ 10 and β ≥ 10−15.

7 EXPERIMENTS FOR OUTLIER DETECTION

7.1 Experimental Settings

7.1.1 Outlier Detectors and Their Parameter Settings
COSH represents a categorical data object with an outlying
vector, so it can be applied to detect outliers directly. To
evaluate the effectiveness of COSH, we compare COSH with
two scoring-based representations and three other outlier
detectors on ten real-world high-dimensional data sets.
Similar to COSH, CBRW [16] and ZERO++ [17] (denoted
by ZERO) unify data representation and outlier detection
as one learning task. CBRW is the state-of-the-art outlier
detector for categorical data and is also a coupled method
since it learns the low-level value couplings to estimate
the outlier score of values. ZERO is a recently proposed
subspace method for handling high-dimensional data.

The other three outlier detectors work on embedding-
based representation (i.e., iForest [18]) or similarity-based

representation (i.e., ABOD [39] and LOF [20]). iForest han-
dles high-dimensional data by working on the feature sub-
space. ABOD is an angle-based method which is designed
for high-dimensional data. LOF is one of the most popular
methods which works on the full dimension. To keep the
most complete information in the original data sets and to
avoid introducing noisy information for outlier detectors,
we transform the categorical data into numerical space with
one-hot encoding to enable iForest, ABOD and LOF to
work on categorical data. Another reason for using one-hot
encoding instead of similarity measures is that there is no
consistently effective similarity for different data sets [40]
and one-hot encoding performs comparably well to other
embedding- or similarity-based representation while it is
much more efficient [17], [40].

COSH uses k-means, so its result is not deterministic.
ZERO and iForest are also non-deterministic methods, so
the results of these three methods are averaged from 10 runs.
We set parameter α = 30 in COSH and parameter α = 0.95
as recommended in CBRW [16]. We use t = 50, n = 256 in
iForest and t = 50, n = 8 in ZERO. LOF is parameter free.
Since a small k is suggested in [20], we use k = 5 in LOF.

7.1.2 Outlier Detection Evaluation Methods

COSH is implemented in MATLAB and the other five outlier
detectors are implemented in JAVA. All the COSH related
experiments were performed on a node 3.4GHz Titan Clus-
ter with 96GB memory.

All the outlier detectors also produce a ranking based on
the outlier scores. As shown in [41], the quality of ranking
can be estimated by the area under the ROC curve (AUC)
which is computed by the Mann-Whitney-Wilcoxon test.
AUC is one of the most popular performance evaluation
methods and it takes class imbalance into consideration. A
higher AUC indicates better outlier detection accuracy.

7.1.3 Data Sets and Data Indicators for Outlier Detection

Ten publicly available real-world data sets 2 are used, which
cover diverse domains, e.g., Internet advertising, image
object recognition, web page classification, and text classi-
fication. The basic data information is shown in Table 3.
Six of the data sets are directly transformed from highly
imbalanced classification data, where the smallest class is
treated as outliers and the largest class is regarded as a
normal class. We transform the other four data sets (PC,
BASE, web, RELA) by randomly sampling a small subset of
the smallest class as outliers to ensure the data sets contain
2% outliers. The performance of these downsampled data
sets is averaged over 10 times of sampling.

We use two data indicators to quantify the value separa-
bility and the couplings between outlier values. We define
two data indicators value separability index (VSI) and outlier
coupling index (OCI) below and the quantization results are
shown in Table 3.

2. The used data sets are available at http://featureselection.asu.edu,
https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/,
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html and
http://tunedit.org/repo/Data
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• VSI is quantified by the value overlapping in normal
objects and outlier objects, defined as follows:

V SI = min {
|{x|x ∈ Xn ∩ vxj ∈ V

Xo
j }|

|Xn|
, j ∈ F}, (18)

where Xn is the set of normal objects and Xo is the set
of outlier objects, and vxj denotes the value of object x in
feature j. A larger VSI indicates a weaker separability
of values.

• The OCI is quantified by the pointwise mutual informa-
tion between outlier values and normal values, which
is defined as follows:

OCI =
pmi(vo, v

′
o)

pmi(vo, v′o) + pmi(vo, vn)
, (19)

where pmi(vo, v
′
o) is the averaged pointwise mutual

information within outlier values, which is calculated
by pmi(vo, v

′
o) = average{ p(vo,v

′
o)

p(vo)p(v′o)
, vo, v

′
o ∈ Vo}.

OCI > 0.5 indicates that the couplings within outlier
values are stronger than the couplings between outlier
values and normal values.

7.2 Evaluation Results
7.2.1 Outlier Detection Effectiveness
The AUC performance of COSH and its five competitors:
CBRW, ZERO, iForest, ABOD and LOF is reported in Table
3. COSH performs better than its five competitors on seven
data sets, and significantly outperforms them at the 95%
confidence level. On average, COSH obtains more than 17%,
27%, 39%, 29% and 44% improvement over CBRW, ZERO,
iForest, ABOD and LOF, respectively. Of all the outlier
detection methods, COSH, CBRW and ZERO are scoring-
based representation since they integrate model learning
and data representation into representation, while iForest,
ABOD and LOF are outlier detectors based on embedding
representation. From Table 3, the performance of scoring-
based representation is much better than pure outlier detec-
tors that rely on data conversion.

In Table 3, the data sets are sorted in the descending
order of V SI . The data indicator V SI describes the sep-
arability of values from a single feature according to the
overlapping values of outlier objects and normal objects.
COSH obtains the best performance on all the data sets with
higher V SI (e.g. V SI > 60%), and it achieves, on average,
substantial AUC improvement over its five competitors
CBRW, ZERO, iForest, ABOD and LOF by more than 28%,
46%, 67%, 50% and 30%, respectively. V SI quantifies the
separability of a single feature, while some outliers could be
identified by multiple features. COSH captures high-order
couplings through value-cluster couplings, which helps to
detect outliers in data sets without strongly coupled features
(i.e., low VSI).

OCI captures the couplings between outliers and nor-
mal values across two features. The larger OCI is, the
stronger the couplings which exist within outliers and the
weaker the couplings between outliers and normal objects.
In the data sets with the highest OCI , i.e., w7a, COSH
achieves much better performance than the others, whereas
COSH does not show its superiority in the data sets with
the lowest OCI , i.e., Cal28.

TABLE 3
AUC Results of COSH vs. Five Outlier Detectors on 10 Data Sets.

Note: CBRW runs out of memory on high-dimensional data WebKB and
Reuters8. ABOD runs out-of-memory on large data w7a and CelebA

Data Info. Data Indicator AUC Performance

Data |X | |F| VSI OCI COSH CBRW ZERO iForest ABOD LOF
w7a 49749 300 0.950 0.589 0.835 0.646 0.538 0.404 NA 0.500
CelebA 202599 39 0.845 0.501 0.716 0.646 0.538 0.404 NA 0.500
WebKB 1658 6601 0.814 0.551 0.753 NA 0.698 0.678 0.670 0.825
RELATHE 794 4080 0.788 0.501 0.896 0.701 0.605 0.556 0.569 0.743
BASEHOCK 1019 4320 0.706 0.513 0.909 0.618 0.529 0.471 0.488 0.664
PCMAC 1002 3039 0.698 0.536 0.890 0.633 0.528 0.476 0.490 0.620
Reuters8 3974 9467 0.260 0.552 0.872 NA 0.883 0.839 0.786 0.892
Caltech-28 829 727 0.088 0.500 0.943 0.960 0.954 0.934 0.927 0.439
Caltech-16 829 253 0.054 0.510 0.996 0.993 0.988 0.972 0.977 0.388
wap.wc 346 4229 0.038 0.534 0.975 0.790 0.657 0.579 0.524 0.516
Average 0.879 0.748 0.692 0.631 0.679 0.609

p-value 0.023 0.020 0.002 0.008 0.010
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Fig. 5. Scalability Test Results. ABOD and CBRW run out of memory
when the number of objects reaches 25,000 and the number of features
reaches 8,000, respectively

7.2.2 Scalability Test

COSH is implemented in MATLAB while the other methods
are implemented in JAVA, so the absolute time is not com-
parable. We demonstrate the ratio of the execution time to
the base time which is from the smallest data set. We use six
subsets of the largest data set CelebA to test the scalability
w.r.t. data size. All these data sets contain the same number
of features, i.e., 39. The execution time on the smallest data
set is: 26.6s for COSH, 0.344s for CBRW, 3.416s for ZERO,
0.299s for iForest, 3685.467s for ABOD, and 2.439s for LOF.

In terms of scalability w.r.t. the number of features, seven
subsets of the data sets with the largest number of features,
R8 are used. All these seven data sets contain the same
number of objects, i.e., 3,974. The execution time on the
smallest data set is: 88.21s for COSH, 1.657s for CBRW,
7.244s for ZERO, 0.182s for iForest, 84.345s for ABOD, and
0.581s for LOF.

The computational complexities of CBRW, ZERO, iFor-
est, ABOD and LOF are O(ND2), O(ND), O(ND),
O(N3D) and O(N2D) respectively. As shown in the right
panel of Fig. 5, COSH is one of the most efficient methods
compared with other state-of-the-art outlier detection meth-
ods w.r.t. the number of objects, since COSH is linear to the
data size and quadratic to the number of features. In the left
panel of Fig. 5, COSH and CBRW have similar runtime and
they run considerably slower than the other four detectors,
since both COSH and CBRW capture complex value interac-
tions while the other methods ignore them. Although COSH
and CBRW run slower, they obtain significantly better AUC
performance than their competitors, as shown in Table 3.
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Fig. 6. Sensitivity Test Results w.r.t. α on Ten Data Sets.

7.2.3 Sensitivity Test
We investigate the sensitivity test of COSH w.r.t. its only
parameter α on all the 10 data sets using a wide range of
α, i.e., {10, 20, 30, 40, 50, 60}. The sensitivity test results of
COSH are shown in Fig. 6. COSH performs stably w.r.t.
α on all data sets. The larger α means the less number of
clustering times and a smaller number of value clusters.

8 DISCUSSIONS

CURE is a hierarchical framework which can be customized
from multiple levels. We instantiate CURE by customizing
the value cluster learning and coupling learning between
value clusters according to different applications based on
the same coupling functions. More instances may be derived
by capturing other forms or levels of couplings [6] for
specific applications.

The two complementary coupling functions used by
CDE and COSH capture only pairwise couplings. Instanti-
ating CURE by incorporating arbitrary length patterns and
their couplings may improve the discriminative ability of
the low-level value coupling functions, and further improve
the representation quality.

One important CURE component is the value cluster
learning, which is instantiated by k-means clustering in CDE
and COSH. Although k-means has multiple advantages, it
has some limitations for detecting the special shape of clus-
ters and overlapping clusters. Learning arbitrary shapes of
value clusters with different clustering methods may enrich
the information of value clusters. However, various kinds of
value clusters may induce more heterogeneous couplings or
noises. Therefore, more advanced methods may be required
to capture couplings between value clusters in this case.

Another important part of CURE is the coupling learn-
ing between value clusters, which is highly related to the
properties of value clusters. There may be various forms
of couplings between value clusters, which are also hard
to capture and interpret. Incorporating more sophisticated
methods to learn explicit and implicit complex value cou-
plings, e.g., by deep models, may be explored to improve
the utility of each value cluster.

9 CONCLUSIONS AND FUTURE WORK

This paper proposes a novel unsupervised representation
framework (CURE) for categorical data which models hi-
erarchical value couplings in terms of feature value inter-
actions and value cluster correlations. Instantiating CURE,

CDE and COSH are respectively introduced for clustering
and outlier detection, which are based on two complemen-
tary and discriminative value couplings. A contrastive anal-
ysis of CDE and COSH explains the contrasting instantiation
capability of CURE.

Different from existing encoding-based embedding and
feature correlation-based similarity measures, CDE learns
the data embedding from value clusters w.r.t. couplings
within and between value clusters. Extensive experiments
show that (1) CDE significantly outperforms typical em-
bedding methods and similarity measures for clustering;
(2) two data indicators can facilitate the explanation of
clustering performance on complex data sets; (3) CDE has
good scalability and is more efficient than similarity-based
representation; and (4) CDE performance is insensitive to
the two parameters.

Different from existing single-granular outlier detection
methods, COSH observes hierarchical outlying behaviors
from value-to-value clusters with different granularities.
Extensive experiments show that (1) COSH significantly
outperforms five state-of-the-art outlier detection methods.
(2) Two data indicators can facilitate the explanation of
outlier detection on complex data sets. (3) COSH has a good
scalability which suits high-dimensional data sets. (4) There
is only one parameter in COSH and it has little influence on
the outlier detection performance.

As discussed, there are great opportunities to further
expand CURE for different learning tasks and scenarios with
complex coupling relationships.
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